Closed-loop control of a noisy qubit with reinforcement learning

The exotic nature of quantum mechanics differentiates machine learning applications in the quantum realm from classical ones. Stream learning is a powerful approach that can be applied to extract knowledge continuously from quantum systems in a wide range of tasks. In this paper, we propose a deep r...

Full description

Bibliographic Details
Main Authors: Chen, X. (Author), Ding, Y. (Author), Magdalena-Benedito, R. (Author), Martín-Guerrero, J.D (Author)
Format: Article
Language:English
Published: Institute of Physics 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02450nam a2200457Ia 4500
001 10.1088-2632-2153-acd048
008 230529s2023 CNT 000 0 und d
020 |a 26322153 (ISSN) 
245 1 0 |a Closed-loop control of a noisy qubit with reinforcement learning 
260 0 |b Institute of Physics  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/2632-2153/acd048 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158867937&doi=10.1088%2f2632-2153%2facd048&partnerID=40&md5=3662b328dda06994c8949125088182fd 
520 3 |a The exotic nature of quantum mechanics differentiates machine learning applications in the quantum realm from classical ones. Stream learning is a powerful approach that can be applied to extract knowledge continuously from quantum systems in a wide range of tasks. In this paper, we propose a deep reinforcement learning method that uses streaming data from a continuously measured qubit in the presence of detuning, dephasing, and relaxation. The model receives streaming quantum information for learning and decision-making, providing instant feedback on the quantum system. We also explore the agent’s adaptability to other quantum noise patterns through transfer learning. Our protocol offers insights into closed-loop quantum control, potentially advancing the development of quantum technologies. © 2023 The Author(s). Published by IOP Publishing Ltd. 
650 0 4 |a Closed loop control systems 
650 0 4 |a Closed-loop 
650 0 4 |a Closed-loop control 
650 0 4 |a closed-loop quantum control 
650 0 4 |a Closed-loop quantum control 
650 0 4 |a Control theory 
650 0 4 |a Decision making 
650 0 4 |a Deep learning 
650 0 4 |a deep reinforcement learning 
650 0 4 |a Deep reinforcement learning 
650 0 4 |a Learning systems 
650 0 4 |a Machine learning applications 
650 0 4 |a noisy qubit 
650 0 4 |a Noisy qubit 
650 0 4 |a Open loop control 
650 0 4 |a Quantum control 
650 0 4 |a Quantum noise 
650 0 4 |a Quantum optics 
650 0 4 |a Quantum system 
650 0 4 |a Qubits 
650 0 4 |a Reinforcement learning 
650 0 4 |a Reinforcement learning method 
650 0 4 |a Reinforcement learnings 
700 1 0 |a Chen, X.  |e author 
700 1 0 |a Ding, Y.  |e author 
700 1 0 |a Magdalena-Benedito, R.  |e author 
700 1 0 |a Martín-Guerrero, J.D.  |e author 
773 |t Machine Learning: Science and Technology