Probabilistic behavioral distance and tuning - Reducing and aggregating complex systems

Given two dynamical systems, we quantify how similar they are with respect to their interaction with the outside world. We focus on the case where simpler systems act as a specification for a more complex one. Combining a behavioral and probabilistic perspective we define several useful notions of t...

Full description

Bibliographic Details
Main Authors: Hellmann, F. (Author), Kurths, J. (Author), Raisch, J. (Author), Zolotarevskaia, E. (Author)
Format: Article
Language:English
Published: Institute of Physics 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02115nam a2200397Ia 4500
001 10.1088-2632-072X-acccc9
008 230529s2023 CNT 000 0 und d
020 |a 2632072X (ISSN) 
245 1 0 |a Probabilistic behavioral distance and tuning - Reducing and aggregating complex systems 
260 0 |b Institute of Physics  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/2632-072X/acccc9 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159173276&doi=10.1088%2f2632-072X%2facccc9&partnerID=40&md5=b557dd5f8e16b67683012b17ac185c10 
520 3 |a Given two dynamical systems, we quantify how similar they are with respect to their interaction with the outside world. We focus on the case where simpler systems act as a specification for a more complex one. Combining a behavioral and probabilistic perspective we define several useful notions of the distance of a system to a specification. We show that these distances can be used to tune a complex system. We demonstrate that our approach can successfully make non-linear networked systems behave like much smaller networks, allowing us to aggregate large sub-networks into one or two effective nodes. Finally, we discuss similarities and differences between our approach and H∞ model reduction. © 2023 The Author(s). Published by IOP Publishing Ltd. 
650 0 4 |a behavioral theory 
650 0 4 |a Behavioral theory 
650 0 4 |a Complex networks 
650 0 4 |a control 
650 0 4 |a Dynamical systems 
650 0 4 |a H∞ model reduction 
650 0 4 |a Large scale systems 
650 0 4 |a model reduction 
650 0 4 |a Model reduction 
650 0 4 |a Networked systems 
650 0 4 |a Non linear 
650 0 4 |a probabilistic methods 
650 0 4 |a Probabilistic methods 
650 0 4 |a Probabilistics 
650 0 4 |a Simple system 
650 0 4 |a Small networks 
650 0 4 |a Specifications 
650 0 4 |a Subnetworks 
700 1 0 |a Hellmann, F.  |e author 
700 1 0 |a Kurths, J.  |e author 
700 1 0 |a Raisch, J.  |e author 
700 1 0 |a Zolotarevskaia, E.  |e author 
773 |t Journal of Physics: Complexity