Experimental investigation on microhardness, surface roughness, and white layer thickness of dry EDM

In this research, the environment-friendly dry electrical discharge machining (EDM) process is investigated to improve the microhardness, surface finish, and white layer thickness of the machined surfaces using graphite-argon gas as a dielectric medium. The graphite powder, mixed with compressed arg...

Full description

Bibliographic Details
Main Authors: Anushkannan, N.K (Author), Boopathi, S. (Author), Dinakaran, K.P (Author), Janardhana, K. (Author), Puse, R.K (Author)
Format: Article
Language:English
Published: Institute of Physics 2023
Subjects:
WPM
Online Access:View Fulltext in Publisher
LEADER 03292nam a2200469Ia 4500
001 10.1088-2631-8695-acce8f
008 230526s2023 CNT 000 0 und d
020 |a 26318695 (ISSN) 
245 1 0 |a Experimental investigation on microhardness, surface roughness, and white layer thickness of dry EDM 
260 0 |b Institute of Physics  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/2631-8695/acce8f 
520 3 |a In this research, the environment-friendly dry electrical discharge machining (EDM) process is investigated to improve the microhardness, surface finish, and white layer thickness of the machined surfaces using graphite-argon gas as a dielectric medium. The graphite powder, mixed with compressed argon gas, has been used to replace the existing dielectric medium in the EDM process. Gas pressure, discharge current, pulse width, and gap voltage were working as input parameters to reduce surface roughness and enhance the microhardness and white layer thickness. The Taguchi L16 orthogonal array is applied to the design and analysis of the experimental results. The minimum surface roughness (2.23 μm) of the HN31 steel has been attained by increasing the gas pressure up to 1.0 MPa and the minimum values of pulse width (40 μs), gap voltage (40 V), and discharge current (6 A). The maximum microhardness (501.04 HV) has been obtained at 1.2 MPa of gas pressure, 120 μs of pulse width, 60 V of gap voltage, and 18 A of discharge current. The maximum white layer thickness (16.24 μm) is achieved by the maximum values of gas pressure (1.2 MPa), pulse width (160 μs), gap voltage (70 V) and discharge current (18 A). The SEM analysis had been done to reveal the white recast layer thickness and surface roughness of the machined surfaces of the dry EDM process. The SR is increased by the recast layer, pores, and microcracks on the machined surfaces. Finally, the multi-criteria optimization technique: Weight Product Method (WPM) is applied to predict optimum process parameter settings: GP: 1.2 MPa, PW: 120 μs, GV: 50 V, and DC: 18 A to meet the best machining performances (MH = 493.32 HV, WLT = 14.28 μm, and SR = 3.82 μm). The validation tests were done to confirm the predicted results obtained by both the Taguchi and WSM methods. © 2023 IOP Publishing Ltd. 
650 0 4 |a Argon 
650 0 4 |a Argon gas 
650 0 4 |a 'Dry' [ 
650 0 4 |a Electric discharge machining 
650 0 4 |a Electric discharges 
650 0 4 |a En31 
650 0 4 |a EN31 
650 0 4 |a Gap voltage 
650 0 4 |a Gas medium 
650 0 4 |a gas pressure 
650 0 4 |a Gas pressures 
650 0 4 |a Graphite 
650 0 4 |a graphite-argon gas medium 
650 0 4 |a Graphite-argon gas medium 
650 0 4 |a Microcracks 
650 0 4 |a Microhardness 
650 0 4 |a Multiobjective optimization 
650 0 4 |a Surface roughness 
650 0 4 |a Taguchi method 
650 0 4 |a Taguchi methods 
650 0 4 |a Taguchi's methods 
650 0 4 |a Weight product method 
650 0 4 |a White layer thickness 
650 0 4 |a WPM 
700 1 0 |a Anushkannan, N.K.  |e author 
700 1 0 |a Boopathi, S.  |e author 
700 1 0 |a Dinakaran, K.P.  |e author 
700 1 0 |a Janardhana, K.  |e author 
700 1 0 |a Puse, R.K.  |e author 
773 |t Engineering Research Express  |x 26318695 (ISSN)  |g 5 2