Growing human-scale scala tympani-like in vitro cell constructs

Emerging materials and electrode technologies have potential to revolutionise development of higher resolution next-generation, bionic devices. However, barriers associated with the extended timescales, regulatory constraints, and opportunity costs of preclinical and clinical studies, can inhibit su...

Full description

Bibliographic Details
Main Authors: Aregueta Robles, U.A (Author), Bartlett-Tomasetig, F. (Author), Poole-Warren, L.A (Author)
Format: Article
Language:English
Published: Institute of Physics 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02556nam a2200433Ia 4500
001 10.1088-1758-5090-accfc0
008 230526s2023 CNT 000 0 und d
020 |a 17585082 (ISSN) 
245 1 0 |a Growing human-scale scala tympani-like in vitro cell constructs 
260 0 |b Institute of Physics  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/1758-5090/accfc0 
520 3 |a Emerging materials and electrode technologies have potential to revolutionise development of higher resolution next-generation, bionic devices. However, barriers associated with the extended timescales, regulatory constraints, and opportunity costs of preclinical and clinical studies, can inhibit such innovation. Development of in vitro models that mimic human tissues would provide an enabling platform to overcome many of these barriers in the product development pathway. This research aimed to develop human-scale tissue engineered cochlea models for high throughput evaluation of cochlear implants on the bench. Novel mould-casting techniques and stereolithography three-dimensional (3D) printing approaches to template hydrogels into spiral-shaped structures resembling the scala tympani were compared. While hydrogels are typically exploited to support 3D tissue-like structures, the challenge lies in developing irregular morphologies like the scala tympani, in which the cochlear electrodes are commonly implanted. This study successfully developed human-scale scala tympani-like hydrogel structures that support viable cell adhesion and can accommodate cochlear implants for future device testing. © 2023 The Author(s). Published by IOP Publishing Ltd. 
650 0 4 |a 3D printing 
650 0 4 |a 3-D printing 
650 0 4 |a 3D tissue engineering 
650 0 4 |a 3d tissue engineerings 
650 0 4 |a 3D-printing 
650 0 4 |a Cell adhesion 
650 0 4 |a Cell engineering 
650 0 4 |a Cells constructs 
650 0 4 |a cochlear implants 
650 0 4 |a Cochlear implants 
650 0 4 |a Electrodes 
650 0 4 |a Emerging materials 
650 0 4 |a Hydrogels 
650 0 4 |a In-vitro 
650 0 4 |a In-vitro models 
650 0 4 |a Molds 
650 0 4 |a mould casting 
650 0 4 |a Mould casting 
650 0 4 |a scala tympani in vitro model 
650 0 4 |a Scala tympani in vitro model 
650 0 4 |a Tissue 
650 0 4 |a Tissue engineering 
650 0 4 |a Vitro cell 
700 1 0 |a Aregueta Robles, U.A.  |e author 
700 1 0 |a Bartlett-Tomasetig, F.  |e author 
700 1 0 |a Poole-Warren, L.A.  |e author 
773 |t Biofabrication  |x 17585082 (ISSN)  |g 15 3