Increasing the structural and compositional diversity of ion-track templated 1D nanostructures through multistep etching, plastic deformation, and deposition

Ion-track etching represents a highly versatile way of introducing artificial pores with diameters down into the nm-regime into polymers, which offers considerable synthetic flexibility in template-assisted nanofabrication schemes. While the mechanistic foundations of ion-track technology are well u...

Full description

Bibliographic Details
Main Authors: Ensinger, W. (Author), Hossain, U.H (Author), Jantsen, G. (Author), Kunz, U. (Author), Muench, F. (Author)
Format: Article
Language:English
Published: IOP Publishing Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02721nam a2200457Ia 4500
001 10.1088-1361-6528-ac59e5
008 220425s2022 CNT 000 0 und d
020 |a 09574484 (ISSN) 
245 1 0 |a Increasing the structural and compositional diversity of ion-track templated 1D nanostructures through multistep etching, plastic deformation, and deposition 
260 0 |b IOP Publishing Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/1361-6528/ac59e5 
520 3 |a Ion-track etching represents a highly versatile way of introducing artificial pores with diameters down into the nm-regime into polymers, which offers considerable synthetic flexibility in template-assisted nanofabrication schemes. While the mechanistic foundations of ion-track technology are well understood, its potential for creating structurally and compositionally complex nano-architectures is far from being fully tapped. In this study, we showcase different strategies to expand the synthetic repertoire of ion-track membrane templating by creating several new 1D nanostructures, namely metal nanotubes of elliptical cross-section, funnel-shaped nanotubes optionally overcoated with titania or nickel nanospike layers, and concentrical as well as stacked metal nanotube-nanowire heterostructures. These nano-architectures are obtained solely by applying different wet-chemical deposition methods (electroless plating, electrodeposition, and chemical bath deposition) to ion-track etched polycarbonate templates, whose pore geometry is modified through plastic deformation, consecutive etching steps under differing conditions, and etching steps intermitted by spatially confined deposition, providing new motifs for nanoscale replication. © 2022 The Author(s). Published by IOP Publishing Ltd. 
650 0 4 |a 1D nanomaterials 
650 0 4 |a 1-D nanomaterials 
650 0 4 |a 1D nanostructures 
650 0 4 |a electrodeposition 
650 0 4 |a Electrodeposition 
650 0 4 |a Electrodes 
650 0 4 |a electroless plating 
650 0 4 |a Electroless plating 
650 0 4 |a Etching 
650 0 4 |a Etching step 
650 0 4 |a Ion track 
650 0 4 |a Ion track etching 
650 0 4 |a Ions 
650 0 4 |a Ion-track membrane 
650 0 4 |a ion-track membranes 
650 0 4 |a Multisteps 
650 0 4 |a Nano-architecture 
650 0 4 |a Nanotubes 
650 0 4 |a Plastic deformation 
650 0 4 |a template-assisted synthesis 
650 0 4 |a Template-assisted synthesis 
650 0 4 |a Templated 
650 0 4 |a Titanium dioxide 
700 1 |a Ensinger, W.  |e author 
700 1 |a Hossain, U.H.  |e author 
700 1 |a Jantsen, G.  |e author 
700 1 |a Kunz, U.  |e author 
700 1 |a Muench, F.  |e author 
773 |t Nanotechnology