Weighted Radon transforms of vector fields, with applications to magnetoacoustoelectric tomography

Currently, theory of ray transforms of vector and tensor fields is well developed, but the Radon transforms of such fields have not been fully analyzed. We thus consider linearly weighted and unweighted longitudinal and transversal Radon transforms of vector fields. As usual, we use the standard Hel...

Full description

Bibliographic Details
Main Authors: Kunyansky, L. (Author), McDugald, E. (Author), Shearer, B. (Author)
Format: Article
Language:English
Published: Institute of Physics 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02758nam a2200397Ia 4500
001 10.1088-1361-6420-acd07a
008 230529s2023 CNT 000 0 und d
020 |a 02665611 (ISSN) 
245 1 0 |a Weighted Radon transforms of vector fields, with applications to magnetoacoustoelectric tomography 
260 0 |b Institute of Physics  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/1361-6420/acd07a 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158897818&doi=10.1088%2f1361-6420%2facd07a&partnerID=40&md5=d51bd9765b20a642d6b793fbe39f4187 
520 3 |a Currently, theory of ray transforms of vector and tensor fields is well developed, but the Radon transforms of such fields have not been fully analyzed. We thus consider linearly weighted and unweighted longitudinal and transversal Radon transforms of vector fields. As usual, we use the standard Helmholtz decomposition of smooth and fast decreasing vector fields over the whole space. We show that such a decomposition produces potential and solenoidal components decreasing at infinity fast enough to guarantee the existence of the unweighted longitudinal and transversal Radon transforms of these components. It is known that reconstruction of an arbitrary vector field from only longitudinal or only transversal transforms is impossible. However, for the cases when both linearly weighted and unweighted transforms of either one of the types are known, we derive explicit inversion formulas for the full reconstruction of the field. Our interest in the inversion of such transforms stems from a certain inverse problem arising in magnetoacoustoelectric tomography (MAET). The connection between the weighted Radon transforms and MAET is exhibited in the paper. Finally, we demonstrate performance and noise sensitivity of the new inversion formulas in numerical simulations. © 2023 The Author(s). Published by IOP Publishing Ltd. 
650 0 4 |a explicit inversion formula 
650 0 4 |a Explicit inversion formula 
650 0 4 |a Inverse problems 
650 0 4 |a Inversion formulae 
650 0 4 |a longitudinal Radon transform 
650 0 4 |a Longitudinal radon transform 
650 0 4 |a Mathematical transformations 
650 0 4 |a Radon 
650 0 4 |a Radon Transform 
650 0 4 |a Tomography 
650 0 4 |a transversal Radon transform 
650 0 4 |a Transversal radon transform 
650 0 4 |a Vector fields 
650 0 4 |a Vector spaces 
650 0 4 |a vector tomography 
650 0 4 |a Vector tomography 
650 0 4 |a Vectors 
650 0 4 |a weighted Radon transform 
650 0 4 |a Weighted radon transform 
700 1 0 |a Kunyansky, L.  |e author 
700 1 0 |a McDugald, E.  |e author 
700 1 0 |a Shearer, B.  |e author 
773 |t Inverse Problems