Photoacoustic inversion formulas using mixed data on finite time intervals

We study the inverse source problem in photoacoustic tomography (PAT) for mixed data, which denote a weighted linear combination of the acoustic pressure and its normal derivative on an observation surface. We consider in particular the case where the data are only available on finite time intervals...

Full description

Bibliographic Details
Main Authors: Dreier, F. (Author), Haltmeier, M. (Author)
Format: Article
Language:English
Published: Institute of Physics 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02165nam a2200397Ia 4500
001 10.1088-1361-6420-ac747b
008 220718s2022 CNT 000 0 und d
020 |a 02665611 (ISSN) 
245 1 0 |a Photoacoustic inversion formulas using mixed data on finite time intervals 
260 0 |b Institute of Physics  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/1361-6420/ac747b 
520 3 |a We study the inverse source problem in photoacoustic tomography (PAT) for mixed data, which denote a weighted linear combination of the acoustic pressure and its normal derivative on an observation surface. We consider in particular the case where the data are only available on finite time intervals, which accounts for real-world usage of PAT where data are only feasible within a certain time interval. Extending our previous work, we derive explicit formulas up to a smoothing integral on convex domains with a smooth boundary, yielding exact reconstruction for circular or elliptical domains. We also present numerical reconstructions of our new exact inversion formulas on finite time intervals and compare them with the reconstructions of our previous formulas for unlimited time wave measurements. © 2022 The Author(s). Published by IOP Publishing Ltd. 
650 0 4 |a Abel integral equation 
650 0 4 |a Abel integral equations 
650 0 4 |a Acoustic pressures 
650 0 4 |a Computerized tomography 
650 0 4 |a Finite time intervals 
650 0 4 |a image reconstruction 
650 0 4 |a Image reconstruction 
650 0 4 |a Images reconstruction 
650 0 4 |a Integral equations 
650 0 4 |a Inverse problems 
650 0 4 |a Inverse source problem 
650 0 4 |a inversion formula 
650 0 4 |a Inversion formulae 
650 0 4 |a Mixed data 
650 0 4 |a photoacoustic computed tomography 
650 0 4 |a Photoacoustic computed tomography 
650 0 4 |a Photoacoustic effect 
650 0 4 |a Photoacoustic tomography 
650 0 4 |a wave equation 
650 0 4 |a Wave equations 
650 0 4 |a Weighted linear combinations 
700 1 |a Dreier, F.  |e author 
700 1 |a Haltmeier, M.  |e author 
773 |t Inverse Problems  |x 02665611 (ISSN)  |g 38 8