Carleman estimate for the Navier-Stokes equations and applications

For linearized Navier-Stokes equations, we first derive a Carleman estimate with a regular weight function. Then we apply it to establish conditional stability for the lateral Cauchy problem and finally we prove conditional stability estimates for the inverse source problem of determining a spatiall...

Full description

Bibliographic Details
Main Authors: Imanuvilov, O.Y (Author), Lorenzi, L. (Author), Yamamoto, M. (Author)
Format: Article
Language:English
Published: Institute of Physics 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01510nam a2200349Ia 4500
001 10.1088-1361-6420-ac4c33
008 220718s2022 CNT 000 0 und d
020 |a 02665611 (ISSN) 
245 1 0 |a Carleman estimate for the Navier-Stokes equations and applications 
260 0 |b Institute of Physics  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/1361-6420/ac4c33 
520 3 |a For linearized Navier-Stokes equations, we first derive a Carleman estimate with a regular weight function. Then we apply it to establish conditional stability for the lateral Cauchy problem and finally we prove conditional stability estimates for the inverse source problem of determining a spatially varying divergence-free factor of a source term. © 2022 IOP Publishing Ltd. 
650 0 4 |a Carleman estimate 
650 0 4 |a Cauchy problems 
650 0 4 |a Conditional stability 
650 0 4 |a Divergence free 
650 0 4 |a inverse problem 
650 0 4 |a Inverse problems 
650 0 4 |a Inverse source problem 
650 0 4 |a lateral Cauchy problem 
650 0 4 |a Lateral cauchy problem 
650 0 4 |a Linearized navier-stokes equations 
650 0 4 |a Navier Stokes equations 
650 0 4 |a Navier-Stokes equation 
650 0 4 |a Navier-Stokes equations 
650 0 4 |a Stability estimates 
650 0 4 |a Viscous flow 
650 0 4 |a Weight functions 
700 1 |a Imanuvilov, O.Y.  |e author 
700 1 |a Lorenzi, L.  |e author 
700 1 |a Yamamoto, M.  |e author 
773 |t Inverse Problems  |x 02665611 (ISSN)  |g 38 8