|
|
|
|
LEADER |
01510nam a2200349Ia 4500 |
001 |
10.1088-1361-6420-ac4c33 |
008 |
220718s2022 CNT 000 0 und d |
020 |
|
|
|a 02665611 (ISSN)
|
245 |
1 |
0 |
|a Carleman estimate for the Navier-Stokes equations and applications
|
260 |
|
0 |
|b Institute of Physics
|c 2022
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.1088/1361-6420/ac4c33
|
520 |
3 |
|
|a For linearized Navier-Stokes equations, we first derive a Carleman estimate with a regular weight function. Then we apply it to establish conditional stability for the lateral Cauchy problem and finally we prove conditional stability estimates for the inverse source problem of determining a spatially varying divergence-free factor of a source term. © 2022 IOP Publishing Ltd.
|
650 |
0 |
4 |
|a Carleman estimate
|
650 |
0 |
4 |
|a Cauchy problems
|
650 |
0 |
4 |
|a Conditional stability
|
650 |
0 |
4 |
|a Divergence free
|
650 |
0 |
4 |
|a inverse problem
|
650 |
0 |
4 |
|a Inverse problems
|
650 |
0 |
4 |
|a Inverse source problem
|
650 |
0 |
4 |
|a lateral Cauchy problem
|
650 |
0 |
4 |
|a Lateral cauchy problem
|
650 |
0 |
4 |
|a Linearized navier-stokes equations
|
650 |
0 |
4 |
|a Navier Stokes equations
|
650 |
0 |
4 |
|a Navier-Stokes equation
|
650 |
0 |
4 |
|a Navier-Stokes equations
|
650 |
0 |
4 |
|a Stability estimates
|
650 |
0 |
4 |
|a Viscous flow
|
650 |
0 |
4 |
|a Weight functions
|
700 |
1 |
|
|a Imanuvilov, O.Y.
|e author
|
700 |
1 |
|
|a Lorenzi, L.
|e author
|
700 |
1 |
|
|a Yamamoto, M.
|e author
|
773 |
|
|
|t Inverse Problems
|x 02665611 (ISSN)
|g 38 8
|