2:3:4 Harmony within the tritave

In the Pythagorean tuning system, the fifth is used to generate a scale of 12 notes per octave. In this paper, we use the octave to generate a scale of 19 notes per tritave; one can play this scale on a traditional piano. In this system, the octave becomes a proper interval and the 2:3:4 chord a pro...

Full description

Bibliographic Details
Main Author: Schmidmeier, M. (Author)
Format: Article
Language:English
Published: Taylor and Francis Ltd. 2019
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01421nam a2200217Ia 4500
001 10.1080-17459737.2019.1605626
008 220511s2019 CNT 000 0 und d
020 |a 17459737 (ISSN) 
245 1 0 |a 2:3:4 Harmony within the tritave 
260 0 |b Taylor and Francis Ltd.  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1080/17459737.2019.1605626 
520 3 |a In the Pythagorean tuning system, the fifth is used to generate a scale of 12 notes per octave. In this paper, we use the octave to generate a scale of 19 notes per tritave; one can play this scale on a traditional piano. In this system, the octave becomes a proper interval and the 2:3:4 chord a proper chord. We study harmonic properties obtained from the 2:3:4 chord, in particular composition elements using dominants, inversions, major and minor chords, and diminished chords. The Tonnetz (array notation) turns out to be an effective tool to visualize the harmonic development in a composition based on these elements. 2:3:4 harmony may sound pure, yet sparse, as we illustrate in a short piece. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. 
650 0 4 |a Bohlen-Pierce 
650 0 4 |a composition 
650 0 4 |a continued fractions 
650 0 4 |a Harmony 
650 0 4 |a neo-Riemannian Tonnetz 
650 0 4 |a scales 
650 0 4 |a tritave 
700 1 |a Schmidmeier, M.  |e author 
773 |t Journal of Mathematics and Music