The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers

Ultrasoft magnetorheological elastomers (MREs) offer convenient real-time magnetic field control of mechanical properties that provides a means to mimic mechanical cues and regulators of cells in vitro. Here, we systematically investigate the effect of polymer stiffness on magnetization reversal of...

Full description

Bibliographic Details
Main Authors: Buchanan, K.S (Author), Cao, Z. (Author), Cheng, X.M (Author), Clark, A.T (Author), Corbin, E.A (Author), Dang, T. (Author), Gilbert, D. (Author), Marchfield, D. (Author), Tang, N. (Author)
Format: Article
Language:English
Published: American Institute of Physics Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02500nam a2200433Ia 4500
001 10.1063-5.0086761
008 220510s2022 CNT 000 0 und d
020 |a 2166532X (ISSN) 
245 1 0 |a The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers 
260 0 |b American Institute of Physics Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1063/5.0086761 
520 3 |a Ultrasoft magnetorheological elastomers (MREs) offer convenient real-time magnetic field control of mechanical properties that provides a means to mimic mechanical cues and regulators of cells in vitro. Here, we systematically investigate the effect of polymer stiffness on magnetization reversal of MREs using a combination of magnetometry measurements and computational modeling. Poly-dimethylsiloxane-based MREs with Young's moduli that range over two orders of magnitude were synthesized using commercial polymers Sylgard™ 527, Sylgard 184, and carbonyl iron powder. The magnetic hysteresis loops of the softer MREs exhibit a characteristic pinched loop shape with almost zero remanence and loop widening at intermediate fields that monotonically decreases with increasing polymer stiffness. A simple two-dipole model that incorporates magneto-mechanical coupling not only confirms that micrometer-scale particle motion along the applied magnetic field direction plays a defining role in the magnetic hysteresis of ultrasoft MREs but also reproduces the observed loop shapes and widening trends for MREs with varying polymer stiffnesses. © 2022 Author(s). 
650 0 4 |a Computational modelling 
650 0 4 |a Elastic moduli 
650 0 4 |a Elastomers 
650 0 4 |a Hysteresis 
650 0 4 |a In-vitro 
650 0 4 |a Magnetic field controls 
650 0 4 |a Magnetic fields 
650 0 4 |a Magnetic materials 
650 0 4 |a Magnetization - reversal 
650 0 4 |a Magnetization reversal 
650 0 4 |a Magnetometry measurements 
650 0 4 |a Magnetorheological elastomers 
650 0 4 |a Measurement model 
650 0 4 |a Mechanical cues 
650 0 4 |a Polydimethylsiloxane(PDMS) 
650 0 4 |a Real- time 
650 0 4 |a Stiffness 
700 1 |a Buchanan, K.S.  |e author 
700 1 |a Cao, Z.  |e author 
700 1 |a Cheng, X.M.  |e author 
700 1 |a Clark, A.T.  |e author 
700 1 |a Corbin, E.A.  |e author 
700 1 |a Dang, T.  |e author 
700 1 |a Gilbert, D.  |e author 
700 1 |a Marchfield, D.  |e author 
700 1 |a Tang, N.  |e author 
773 |t APL Materials