Excitation of ion-acoustic waves by non-linear finite-amplitude standing Alfvén waves

We investigate, using a multi-fluid approach, the main properties of standing ion-acoustic modes driven by non-linear standing Alfvén waves. The standing character of the Alfvénic pump is due to the superposition of two identical circularly polarised counter-propagating waves. We consider parallel...

Full description

Bibliographic Details
Main Authors: Araneda, J.A (Author), Terradas, J. (Author), Viñas, A.F (Author)
Format: Article
Language:English
Published: EDP Sciences 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02703nam a2200397Ia 4500
001 10.1051-0004-6361-202141914
008 220425s2022 CNT 000 0 und d
020 |a 00046361 (ISSN) 
245 1 0 |a Excitation of ion-acoustic waves by non-linear finite-amplitude standing Alfvén waves 
260 0 |b EDP Sciences  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1051/0004-6361/202141914 
520 3 |a We investigate, using a multi-fluid approach, the main properties of standing ion-acoustic modes driven by non-linear standing Alfvén waves. The standing character of the Alfvénic pump is due to the superposition of two identical circularly polarised counter-propagating waves. We consider parallel propagation along the constant magnetic field and we find that left- and right-handed modes generate via ponderomotive forces the second harmonic of standing ion-acoustic waves. We demonstrate that parametric instabilities are not relevant in the present problem and the secondary ion-acoustic waves attenuate by Landau damping in the absence of any other dissipative process. Kinetic effects are included in our model where ions are considered as particles and electrons as a massless fluid, and hybrid simulations are used to complement the theoretical results. Analytical expressions are obtained for the time evolution of the different physical variables in the absence of Landau damping. From the hybrid simulations we find that the attenuation of the generated ion-acoustic waves follows the theoretical predictions even under the presence of an Alfvénic pump. Due to the non-linear induced ion-acoustic waves the system develops density cavities and an electric field parallel to the magnetic field. Theoretical expressions for this density and electric field fluctuations are derived. The implications of these results in the context of standing slow mode oscillations in coronal loops is discussed. © ESO 2022. 
650 0 4 |a Acoustic fields 
650 0 4 |a Acoustic wave propagation 
650 0 4 |a Circularly-polarized 
650 0 4 |a Counterpropagating waves 
650 0 4 |a Damping 
650 0 4 |a Electric fields 
650 0 4 |a Finite amplitude 
650 0 4 |a Hybrid simulation 
650 0 4 |a Ion acoustic waves 
650 0 4 |a Ion-acoustic modes 
650 0 4 |a Ions 
650 0 4 |a Landau damping 
650 0 4 |a Magnetic fields 
650 0 4 |a Magnetic fields 
650 0 4 |a Magnetic-field 
650 0 4 |a Magnetoplasma 
650 0 4 |a Multi-fluids 
650 0 4 |a Non linear 
650 0 4 |a Plasmas 
650 0 4 |a Property 
700 1 |a Araneda, J.A.  |e author 
700 1 |a Terradas, J.  |e author 
700 1 |a Viñas, A.F.  |e author 
773 |t Astronomy and Astrophysics