Machine learning-assisted direction-of-arrival accuracy enhancement technique using oversized lens-loaded cavity

This paper presents a framework for achieving machine learning (ML)-assisted direction-of-arrival (DoA) accuracy enhancement using a millimetre-wave (mmWave) dynamic aperture. The technique used for the enhanced DoA estimation accuracy leverages an over-sized lens-loaded cavity antenna connected to...

Full description

Bibliographic Details
Main Authors: Abbasi, M.A.B (Author), Akinsolu, M.O (Author), Cotton, S.L (Author), Fusco, V.F (Author), Imran, M.A (Author), Khalily, M. (Author), Liu, B. (Author), Yurduseven, O. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03260nam a2200469Ia 4500
001 10.1049-mia2.12257
008 220510s2022 CNT 000 0 und d
020 |a 17518725 (ISSN) 
245 1 0 |a Machine learning-assisted direction-of-arrival accuracy enhancement technique using oversized lens-loaded cavity 
260 0 |b John Wiley and Sons Inc  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1049/mia2.12257 
520 3 |a This paper presents a framework for achieving machine learning (ML)-assisted direction-of-arrival (DoA) accuracy enhancement using a millimetre-wave (mmWave) dynamic aperture. The technique used for the enhanced DoA estimation accuracy leverages an over-sized lens-loaded cavity antenna connected to a single RF chain in the physical layer and a computational method in the computational layer of the framework. It is shown for the first time that by introducing a reconfigurable mode-mixing mechanism inside the over-sized lens-loaded cavity hardware, a greater number of spatially orthogonal radiation modes can be achieved giving rise to many cavity states. If the best cavity state is determined and selected by means of design exploration using a contemporary ML-assisted antenna optimisation method, the computational DoA estimation accuracy can be improved. The mode-mixing mechanism in this work is a randomly oriented metallic scatterer located inside an over-sized constant−ϵr lens-loaded cavity, connected to a stepper motor that is electronically controlled by inputs from the computational layer of the presented framework. Measurement results in terms of near-field radiation mode scans are included in this study to verify and validate that the proposed ML-assisted framework enhances the DoA estimation accuracy. Moreover, this investigation simultaneously provides a simplification in the physical layer implementation of mmWave radio hardware, and DoA accuracy enhancement, which in turn lends itself favourably to the adoption of the proposed framework for channel sounding in mmWave communication systems. © 2022 The Authors. IET Microwaves, Antennas & Propagation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 
650 0 4 |a Accuracy enhancement 
650 0 4 |a antennas 
650 0 4 |a B5G mobile communication 
650 0 4 |a channel estimation 
650 0 4 |a Computer hardware 
650 0 4 |a Direction of arrival 
650 0 4 |a Direction of arrival estimation 
650 0 4 |a Directionof-arrival (DOA) 
650 0 4 |a diversity reception 
650 0 4 |a lens antennas 
650 0 4 |a Loaded cavity 
650 0 4 |a Machine learning 
650 0 4 |a Millimeter waves 
650 0 4 |a Mixing 
650 0 4 |a Mixing mechanisms 
650 0 4 |a Mobile communications 
650 0 4 |a Mode mixing 
650 0 4 |a Network layers 
650 0 4 |a Radiation mode 
650 0 4 |a Receiving antennas 
650 0 4 |a Wave dynamics 
700 1 |a Abbasi, M.A.B.  |e author 
700 1 |a Akinsolu, M.O.  |e author 
700 1 |a Cotton, S.L.  |e author 
700 1 |a Fusco, V.F.  |e author 
700 1 |a Imran, M.A.  |e author 
700 1 |a Khalily, M.  |e author 
700 1 |a Liu, B.  |e author 
700 1 |a Yurduseven, O.  |e author 
773 |t IET Microwaves, Antennas and Propagation