Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses

The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcripto...

Full description

Bibliographic Details
Main Authors: Brookes, S. (Author), Cox, A. (Author), Gao, H. (Author), Liu, Y. (Author), Morrison, R.A (Author), Puls, T.J (Author), Voytik-Harbin, S.L (Author)
Format: Article
Language:English
Published: Royal Society of Chemistry 2023
Subjects:
rat
Online Access:View Fulltext in Publisher
LEADER 02714nam a2200553Ia 4500
001 10.1039-d3bm00091e
008 230526s2023 CNT 000 0 und d
020 |a 20474830 (ISSN) 
245 1 0 |a Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses 
260 0 |b Royal Society of Chemistry  |c 2023 
300 |a 19 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1039/d3bm00091e 
520 3 |a The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days. Oligomer scaffolds were noninflammatory, eliciting minimal innate inflammation and immune cell accumulation similar to sham surgical controls. Genes associated with Th2 and regulatory T cells were instead upregulated, implying a novel pathway to immune tolerance and regenerative remodeling for biomaterials. © 2023 The Royal Society of Chemistry. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Anti-inflammatories 
650 0 4 |a Biocompatible Materials 
650 0 4 |a biomaterial 
650 0 4 |a collagen 
650 0 4 |a Collagen 
650 0 4 |a Collagen scaffolds 
650 0 4 |a collagen type 1 
650 0 4 |a Collagen Type I 
650 0 4 |a foreign body reaction 
650 0 4 |a Foreign Body Response 
650 0 4 |a Foreign-Body Reaction 
650 0 4 |a Host immune response 
650 0 4 |a Implantation models 
650 0 4 |a Medical Devices 
650 0 4 |a Medical implants 
650 0 4 |a metabolism 
650 0 4 |a Microenvironments 
650 0 4 |a Oligomers 
650 0 4 |a Polymeric implants 
650 0 4 |a Polymeric materials 
650 0 4 |a rat 
650 0 4 |a Rats 
650 0 4 |a Scaffolds (biology) 
650 0 4 |a Tissue response 
650 0 4 |a Tissue Scaffolds 
650 0 4 |a Transcriptomics 
700 1 0 |a Brookes, S.  |e author 
700 1 0 |a Cox, A.  |e author 
700 1 0 |a Gao, H.  |e author 
700 1 0 |a Liu, Y.  |e author 
700 1 0 |a Morrison, R.A.  |e author 
700 1 0 |a Puls, T.J.  |e author 
700 1 0 |a Voytik-Harbin, S.L.  |e author 
773 |t Biomaterials Science  |x 20474830 (ISSN)  |g 11 9, 3278-3296