Mechanisms of water infiltration into conical hydrophobic nanopores

Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nan...

Full description

Bibliographic Details
Main Authors: Chen, X. (Author), Culligan, P.J (Author), Liu, L. (Author), Yin, C.-Y (Author), Zhao, J. (Author)
Format: Article
Language:English
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02775nam a2200505Ia 4500
001 10.1039-b905641f
008 220112s2009 CNT 000 0 und d
020 |a 14639076 (ISSN) 
245 1 0 |a Mechanisms of water infiltration into conical hydrophobic nanopores 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1039/b905641f 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-68849122814&doi=10.1039%2fb905641f&partnerID=40&md5=7228e1e19eb69056f49646b8618bcfbe 
520 3 |a Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement. © 2009 the Owner Societies. 
650 0 4 |a adsorption 
650 0 4 |a Adsorption 
650 0 4 |a article 
650 0 4 |a Biological Transport 
650 0 4 |a carbon 
650 0 4 |a Carbon 
650 0 4 |a carbon nanotube 
650 0 4 |a chemical phenomena 
650 0 4 |a chemistry 
650 0 4 |a Chemistry, Physical 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a Hydrophobic and Hydrophilic Interactions 
650 0 4 |a methodology 
650 0 4 |a nanoparticle 
650 0 4 |a Nanoparticles 
650 0 4 |a nanotechnology 
650 0 4 |a Nanotechnology 
650 0 4 |a Nanotubes, Carbon 
650 0 4 |a physical chemistry 
650 0 4 |a pressure 
650 0 4 |a Pressure 
650 0 4 |a Surface Properties 
650 0 4 |a surface property 
650 0 4 |a transport at the cellular level 
650 0 4 |a water 
650 0 4 |a Water 
700 1 0 |a Chen, X.  |e author 
700 1 0 |a Culligan, P.J.  |e author 
700 1 0 |a Liu, L.  |e author 
700 1 0 |a Yin, C.-Y.  |e author 
700 1 0 |a Zhao, J.  |e author 
773 |t Physical Chemistry Chemical Physics