Data-driven discovery of Green’s functions with human-understandable deep learning

There is an opportunity for deep learning to revolutionize science and technology by revealing its findings in a human interpretable manner. To do this, we develop a novel data-driven approach for creating a human–machine partnership to accelerate scientific discovery. By collecting physical system...

Full description

Bibliographic Details
Main Authors: Boullé, N. (Author), Earls, C.J (Author), Townsend, A. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01848nam a2200337Ia 4500
001 10.1038-s41598-022-08745-5
008 220511s2022 CNT 000 0 und d
020 |a 20452322 (ISSN) 
245 1 0 |a Data-driven discovery of Green’s functions with human-understandable deep learning 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41598-022-08745-5 
520 3 |a There is an opportunity for deep learning to revolutionize science and technology by revealing its findings in a human interpretable manner. To do this, we develop a novel data-driven approach for creating a human–machine partnership to accelerate scientific discovery. By collecting physical system responses under excitations drawn from a Gaussian process, we train rational neural networks to learn Green’s functions of hidden linear partial differential equations. These functions reveal human-understandable properties and features, such as linear conservation laws and symmetries, along with shock and singularity locations, boundary effects, and dominant modes. We illustrate the technique on several examples and capture a range of physics, including advection–diffusion, viscous shocks, and Stokes flow in a lid-driven cavity. © 2022, The Author(s). 
650 0 4 |a advection 
650 0 4 |a article 
650 0 4 |a deep learning 
650 0 4 |a Deep Learning 
650 0 4 |a diffusion 
650 0 4 |a excitation 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a machine learning 
650 0 4 |a Machine Learning 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a normal distribution 
650 0 4 |a Normal Distribution 
650 0 4 |a physics 
700 1 |a Boullé, N.  |e author 
700 1 |a Earls, C.J.  |e author 
700 1 |a Townsend, A.  |e author 
773 |t Scientific Reports