Autonomous quantum error correction in a four-photon Kerr parametric oscillator

Autonomous quantum error correction has gained considerable attention to avoid complicated measurements and feedback. Despite its simplicity compared with the conventional measurement-based quantum error correction, it is still a far from practical technique because of significant hardware overhead....

Full description

Bibliographic Details
Main Authors: Kwon, S. (Author), Tsai, J.-S (Author), Watabe, S. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02200nam a2200325Ia 4500
001 10.1038-s41534-022-00553-z
008 220510s2022 CNT 000 0 und d
020 |a 20566387 (ISSN) 
245 1 0 |a Autonomous quantum error correction in a four-photon Kerr parametric oscillator 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41534-022-00553-z 
520 3 |a Autonomous quantum error correction has gained considerable attention to avoid complicated measurements and feedback. Despite its simplicity compared with the conventional measurement-based quantum error correction, it is still a far from practical technique because of significant hardware overhead. We propose an autonomous quantum error correction scheme for a rotational symmetric bosonic code in a four-photon Kerr parametric oscillator. Our scheme is the simplest possible error correction scheme that can surpass the break-even point—it requires only a single continuous microwave tone. We also introduce an unconditional reset scheme that requires one more continuous microwave tone in addition to that for the error correction. The key properties underlying this simplicity are protected quasienergy states of a four-photon Kerr parametric oscillator and the degeneracy in its quasienergy level structure. These properties eliminate the need for state-by-state correction in the Fock basis. Our schemes greatly reduce the complexity of autonomous quantum error correction and thus may accelerate the use of the bosonic code for practical quantum computation. © 2022, The Author(s). 
650 0 4 |a Bosons 
650 0 4 |a Conventional measurements 
650 0 4 |a Error correction 
650 0 4 |a Error-correction schemes 
650 0 4 |a Hardware overheads 
650 0 4 |a Measurement and feedbacks 
650 0 4 |a Measurement-based 
650 0 4 |a Photons 
650 0 4 |a Property 
650 0 4 |a Quantum computers 
650 0 4 |a Quantum error correction scheme 
650 0 4 |a Quantum error corrections 
650 0 4 |a Simple++ 
650 0 4 |a Symmetrics 
700 1 |a Kwon, S.  |e author 
700 1 |a Tsai, J.-S.  |e author 
700 1 |a Watabe, S.  |e author 
773 |t npj Quantum Information