Spectral analysis of product formulas for quantum simulation

We consider the time-independent Hamiltonian simulation using the first order Lie–Trotter–Suzuki product formula under the assumption that the initial state is supported on a low-dimension subspace. By comparing the spectral decomposition of the original Hamiltonian and the effective Hamiltonian, we...

Full description

Bibliographic Details
Main Authors: Crosson, E. (Author), Yi, C. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01648nam a2200325Ia 4500
001 10.1038-s41534-022-00548-w
008 220425s2022 CNT 000 0 und d
020 |a 20566387 (ISSN) 
245 1 0 |a Spectral analysis of product formulas for quantum simulation 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41534-022-00548-w 
520 3 |a We consider the time-independent Hamiltonian simulation using the first order Lie–Trotter–Suzuki product formula under the assumption that the initial state is supported on a low-dimension subspace. By comparing the spectral decomposition of the original Hamiltonian and the effective Hamiltonian, we obtain better upper bounds for various conditions. Especially, we show that the Trotter step size needed to estimate an energy eigenvalue within precision ϵ using quantum phase estimation can be improved in scaling from ϵ to ϵ1/2 for a large class of systems. Our results also depend on the gap condition of the simulated Hamiltonian. © 2022, The Author(s). 
650 0 4 |a Condition 
650 0 4 |a Effective Hamiltonian 
650 0 4 |a Eigenvalues and eigenfunctions 
650 0 4 |a Energy eigenvalues 
650 0 4 |a First order 
650 0 4 |a Hamiltonians 
650 0 4 |a Initial state 
650 0 4 |a Quantum chemistry 
650 0 4 |a Quantum simulations 
650 0 4 |a Quantum theory 
650 0 4 |a Spectral decomposition 
650 0 4 |a Spectrum analysis 
650 0 4 |a Step size 
650 0 4 |a Time-independent Hamiltonian 
650 0 4 |a Upper Bound 
700 1 |a Crosson, E.  |e author 
700 1 |a Yi, C.  |e author 
773 |t npj Quantum Information