Multi-modality machine learning predicting Parkinson’s disease

Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson’s disease (PD) risk and systematically develop a mo...

Full description

Bibliographic Details
Main Authors: Bandres-Ciga, S. (Author), Blauwendraat, C. (Author), Bookman, M. (Author), Botia, J.A (Author), Campbell, R.H (Author), Carter, J.F (Author), Craig, D.W (Author), Dadu, A. (Author), Faghri, F. (Author), Hardy, J.A (Author), Hashemi, S.H (Author), Hutchins, E. (Author), Iwaki, H. (Author), Kim, J.J (Author), Leonard, H.L (Author), Makarious, M.B (Author), Maleknia, M. (Author), Morris, H.R (Author), Nalls, M.A (Author), Nojopranoto, W. (Author), Saffo, D. (Author), Sargent, L. (Author), Singleton, A.B (Author), Song, Y. (Author), Van Keuren-Jensen, K. (Author), Violich, I. (Author), Vitale, D. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04103nam a2200757Ia 4500
001 10.1038-s41531-022-00288-w
008 220511s2022 CNT 000 0 und d
020 |a 23738057 (ISSN) 
245 1 0 |a Multi-modality machine learning predicting Parkinson’s disease 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41531-022-00288-w 
520 3 |a Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson’s disease (PD) risk and systematically develop a model using GenoML, an automated ML package, to make improved multi-omic predictions of PD, validated in an external cohort. We investigated top features, constructed hypothesis-free disease-relevant networks, and investigated drug–gene interactions. We performed automated ML on multimodal data from the Parkinson’s progression marker initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson’s Disease Biomarker Program (PDBP) dataset. Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification increased the diagnosis prediction accuracy and other metrics. Finally, networks were built to identify gene communities specific to PD. Combining data modalities outperforms the single biomarker paradigm. UPSIT and PRS contributed most to the predictive power of the model, but the accuracy of these are supplemented by many smaller effect transcripts and risk SNPs. Our model is best suited to identifying large groups of individuals to monitor within a health registry or biobank to prioritize for further testing. This approach allows complex predictive models to be reproducible and accessible to the community, with the package, code, and results publicly available. © 2022, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply. 
650 0 4 |a accuracy 
650 0 4 |a algorithm 
650 0 4 |a area under the curve 
650 0 4 |a Article 
650 0 4 |a binocular convergence 
650 0 4 |a biobank 
650 0 4 |a biological marker 
650 0 4 |a discriminant analysis 
650 0 4 |a DNA sequence 
650 0 4 |a DNA sequencing 
650 0 4 |a gene 
650 0 4 |a gene expression 
650 0 4 |a gene interaction 
650 0 4 |a genetic transcription 
650 0 4 |a human 
650 0 4 |a machine learning 
650 0 4 |a Parkinson disease 
650 0 4 |a prediction 
650 0 4 |a predictive model 
650 0 4 |a predictive value 
650 0 4 |a quality control 
650 0 4 |a RNA sequencing 
650 0 4 |a sensitivity and specificity 
650 0 4 |a single nucleotide polymorphism 
650 0 4 |a support vector machine 
650 0 4 |a training 
700 1 |a Bandres-Ciga, S.  |e author 
700 1 |a Blauwendraat, C.  |e author 
700 1 |a Bookman, M.  |e author 
700 1 |a Botia, J.A.  |e author 
700 1 |a Campbell, R.H.  |e author 
700 1 |a Carter, J.F.  |e author 
700 1 |a Craig, D.W.  |e author 
700 1 |a Dadu, A.  |e author 
700 1 |a Faghri, F.  |e author 
700 1 |a Hardy, J.A.  |e author 
700 1 |a Hashemi, S.H.  |e author 
700 1 |a Hutchins, E.  |e author 
700 1 |a Iwaki, H.  |e author 
700 1 |a Kim, J.J.  |e author 
700 1 |a Leonard, H.L.  |e author 
700 1 |a Makarious, M.B.  |e author 
700 1 |a Maleknia, M.  |e author 
700 1 |a Morris, H.R.  |e author 
700 1 |a Nalls, M.A.  |e author 
700 1 |a Nojopranoto, W.  |e author 
700 1 |a Saffo, D.  |e author 
700 1 |a Sargent, L.  |e author 
700 1 |a Singleton, A.B.  |e author 
700 1 |a Song, Y.  |e author 
700 1 |a Van Keuren-Jensen, K.  |e author 
700 1 |a Violich, I.  |e author 
700 1 |a Vitale, D.  |e author 
773 |t npj Parkinson's Disease