Super-resolving microscopy images of Li-ion electrodes for fine-feature quantification using generative adversarial networks

For a deeper understanding of the functional behavior of energy materials, it is necessary to investigate their microstructure, e.g., via imaging techniques like scanning electron microscopy (SEM). However, active materials are often heterogeneous, necessitating quantification of features over large...

Full description

Bibliographic Details
Main Authors: Finegan, D.P (Author), Furat, O. (Author), Kirstein, T. (Author), Schmidt, V. (Author), Smith, K. (Author), Yang, Z. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02343nam a2200373Ia 4500
001 10.1038-s41524-022-00749-z
008 220425s2022 CNT 000 0 und d
020 |a 20573960 (ISSN) 
245 1 0 |a Super-resolving microscopy images of Li-ion electrodes for fine-feature quantification using generative adversarial networks 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41524-022-00749-z 
520 3 |a For a deeper understanding of the functional behavior of energy materials, it is necessary to investigate their microstructure, e.g., via imaging techniques like scanning electron microscopy (SEM). However, active materials are often heterogeneous, necessitating quantification of features over large volumes to achieve representativity which often requires reduced resolution for large fields of view. Cracks within Li-ion electrode particles are an example of fine features, representative quantification of which requires large volumes of tens of particles. To overcome the trade-off between the imaged volume of the material and the resolution achieved, we deploy generative adversarial networks (GAN), namely SRGANs, to super-resolve SEM images of cracked cathode materials. A quantitative analysis indicates that SRGANs outperform various other networks for crack detection within aged cathode particles. This makes GANs viable for performing super-resolution on microscopy images for mitigating the trade-off between resolution and field of view, thus enabling representative quantification of fine features. © 2022, The Author(s). 
650 0 4 |a Active material 
650 0 4 |a Cathodes 
650 0 4 |a Crack detection 
650 0 4 |a Economic and social effects 
650 0 4 |a Energy materials 
650 0 4 |a Fine Feature 
650 0 4 |a Functional behaviors 
650 0 4 |a Generative adversarial networks 
650 0 4 |a Ions electrodes 
650 0 4 |a Large volumes 
650 0 4 |a Microscopy images 
650 0 4 |a Reduced resolution 
650 0 4 |a Representativity 
650 0 4 |a Scanning electron microscopy 
650 0 4 |a Trade off 
700 1 |a Finegan, D.P.  |e author 
700 1 |a Furat, O.  |e author 
700 1 |a Kirstein, T.  |e author 
700 1 |a Schmidt, V.  |e author 
700 1 |a Smith, K.  |e author 
700 1 |a Yang, Z.  |e author 
773 |t npj Computational Materials