Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax

All extant core-eudicot plants share a common ancestral genome that has experienced cyclic polyploidizations and (re)diploidizations. Reshuffling of the ancestral core-eudicot genome generates abundant genomic diversity, but the role of this diversity in shaping the hierarchical genome architecture,...

Full description

Bibliographic Details
Main Authors: Fu, X.-Q (Author), Jiang, P. (Author), Li, L.-F (Author), Li, M.-R (Author), Liu, B. (Author), Liu, S.-T (Author), Lu, T. (Author), Van de Peer, Y. (Author), Wang, X.-F (Author), Wang, Z.-H (Author), Wendel, J.F (Author), Zhao, J. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02209nam a2200337Ia 4500
001 10.1038-s41467-022-29561-5
008 220425s2022 CNT 000 0 und d
020 |a 20411723 (ISSN) 
245 1 0 |a Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41467-022-29561-5 
520 3 |a All extant core-eudicot plants share a common ancestral genome that has experienced cyclic polyploidizations and (re)diploidizations. Reshuffling of the ancestral core-eudicot genome generates abundant genomic diversity, but the role of this diversity in shaping the hierarchical genome architecture, such as chromatin topology and gene expression, remains poorly understood. Here, we assemble chromosome-level genomes of one diploid and three tetraploid Panax species and conduct in-depth comparative genomic and epigenomic analyses. We show that chromosomal interactions within each duplicated ancestral chromosome largely maintain in extant Panax species, albeit experiencing ca. 100–150 million years of evolution from a shared ancestor. Biased genetic fractionation and epigenetic regulation divergence during polyploidization/(re)diploidization processes generate remarkable biochemical diversity of secondary metabolites in the Panax genus. Our study provides a paleo-polyploidization perspective of how reshuffling of the ancestral core-eudicot genome leads to a highly dynamic genome and to the metabolic diversification of extant eudicot plants. © 2022, The Author(s). 
650 0 4 |a chromosome 
650 0 4 |a genetic analysis 
650 0 4 |a genome 
650 0 4 |a grass 
650 0 4 |a pigment 
650 0 4 |a topology 
700 1 |a Fu, X.-Q.  |e author 
700 1 |a Jiang, P.  |e author 
700 1 |a Li, L.-F.  |e author 
700 1 |a Li, M.-R.  |e author 
700 1 |a Liu, B.  |e author 
700 1 |a Liu, S.-T.  |e author 
700 1 |a Lu, T.  |e author 
700 1 |a Van de Peer, Y.  |e author 
700 1 |a Wang, X.-F.  |e author 
700 1 |a Wang, Z.-H.  |e author 
700 1 |a Wendel, J.F.  |e author 
700 1 |a Zhao, J.  |e author 
773 |t Nature Communications