Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules

Carbon dots (CDs) are light-emitting nanoparticles that show great promise for applications in biology and medicine due to the ease of fabrication, biocompatibility, and attractive optical properties. Optical chirality, on the other hand, is an intrinsic feature inherent in many objects in nature, a...

Full description

Bibliographic Details
Main Authors: Baranov, A.V (Author), Cherevkov, S.A (Author), Danilov, D.V (Author), Das, A. (Author), Fedorov, A.V (Author), Koroleva, A.V (Author), Kundelev, E.V (Author), Litvin, A.P (Author), Rogach, A.L (Author), Tsypkin, A.N (Author), Ushakova, E.V (Author), Vedernikova, A.A (Author), Zhizhin, E.V (Author)
Format: Article
Language:English
Published: Springer Nature 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03353nam a2200541Ia 4500
001 10.1038-s41377-022-00778-9
008 220425s2022 CNT 000 0 und d
020 |a 20955545 (ISSN) 
245 1 0 |a Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules 
260 0 |b Springer Nature  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41377-022-00778-9 
520 3 |a Carbon dots (CDs) are light-emitting nanoparticles that show great promise for applications in biology and medicine due to the ease of fabrication, biocompatibility, and attractive optical properties. Optical chirality, on the other hand, is an intrinsic feature inherent in many objects in nature, and it can play an important role in the formation of artificial complexes based on CDs that are implemented for enantiomer recognition, site-specific bonding, etc. We employed a one-step hydrothermal synthesis to produce chiral CDs from the commonly used precursors citric acid and ethylenediamine together with a set of different chiral precursors, namely, L-isomers of cysteine, glutathione, phenylglycine, and tryptophan. The resulting CDs consisted of O,N-doped (and also S-doped, in some cases) carbonized cores with surfaces rich in amide and hydroxyl groups; they exhibited high photoluminescence quantum yields reaching 57%, chiral optical signals in the UV and visible spectral regions, and two-photon absorption. Chiral signals of CDs were rather complex and originated from a combination of the chiral precursors attached to the CD surface, hybridization of lower-energy levels of chiral chromophores formed within CDs, and intrinsic chirality of the CD cores. Using DFT analysis, we showed how incorporation of the chiral precursors at the optical centers induced a strong response in their circular dichroism spectra. The optical characteristics of these CDs, which can easily be dispersed in solvents of different polarities, remained stable during pH changes in the environment and after UV exposure for more than 400 min, which opens a wide range of bio-applications. © 2022, The Author(s). 
650 0 4 |a Amides 
650 0 4 |a Amino acids 
650 0 4 |a Biocompatibility 
650 0 4 |a Biology and medicine 
650 0 4 |a Carbon 
650 0 4 |a Carbon dots 
650 0 4 |a Chiral precursors 
650 0 4 |a Chirality 
650 0 4 |a Chromophores 
650 0 4 |a Dichroism 
650 0 4 |a Doping (additives) 
650 0 4 |a Ethylene diamine 
650 0 4 |a Hydrothermal synthesis 
650 0 4 |a Intrinsic features 
650 0 4 |a Isomers 
650 0 4 |a Optical activity 
650 0 4 |a Optical chirality 
650 0 4 |a Precursor molecules 
650 0 4 |a Recognition site 
650 0 4 |a Site-specific 
650 0 4 |a Stereochemistry 
650 0 4 |a Two photon processes 
700 1 |a Baranov, A.V.  |e author 
700 1 |a Cherevkov, S.A.  |e author 
700 1 |a Danilov, D.V.  |e author 
700 1 |a Das, A.  |e author 
700 1 |a Fedorov, A.V.  |e author 
700 1 |a Koroleva, A.V.  |e author 
700 1 |a Kundelev, E.V.  |e author 
700 1 |a Litvin, A.P.  |e author 
700 1 |a Rogach, A.L.  |e author 
700 1 |a Tsypkin, A.N.  |e author 
700 1 |a Ushakova, E.V.  |e author 
700 1 |a Vedernikova, A.A.  |e author 
700 1 |a Zhizhin, E.V.  |e author 
773 |t Light: Science and Applications