Determining synchrony between behavioral time series: An application of surrogate data generation for establishing falsifiable null-hypotheses

Synchrony between interacting systems is an important area of nonlinear dynamics in physical systems. Recently psychological researchers from multiple areas of psychology have become interested in nonverbal synchrony (i.e., coordinated motion between two individuals engaged in dyadic information exc...

Full description

Bibliographic Details
Main Authors: Boker, S.M (Author), Moulder, R.G (Author), Ramseyer, F. (Author), Tschacher, W. (Author)
Format: Article
Language:English
Published: American Psychological Association Inc. 2018
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03348nam a2200601Ia 4500
001 10.1037-met0000172
008 220706s2018 CNT 000 0 und d
020 |a 1082989X (ISSN) 
245 1 0 |a Determining synchrony between behavioral time series: An application of surrogate data generation for establishing falsifiable null-hypotheses 
260 0 |b American Psychological Association Inc.  |c 2018 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1037/met0000172 
520 3 |a Synchrony between interacting systems is an important area of nonlinear dynamics in physical systems. Recently psychological researchers from multiple areas of psychology have become interested in nonverbal synchrony (i.e., coordinated motion between two individuals engaged in dyadic information exchange such as communication or dance) as a predictor and outcome of psychological processes. An important step in studying nonverbal synchrony is systematically and validly differentiating synchronous systems from nonsynchronous systems. However, many current methods of testing and quantifying nonverbal synchrony will show some level of observed synchrony even when research participants have not interacted with one another. In this article we demonstrate the use of surrogate data generation methodology as a means of testing new null-hypotheses for synchrony between bivariate time series such as those derived from modern motion tracking methods. Hypotheses generated by surrogate data generation methods are more nuanced and meaningful than hypotheses from standard null-hypothesis testing. We review four surrogate data generation methods for testing for significant nonverbal synchrony within a windowed cross-correlation (WCC) framework. We also interpret the null-hypotheses generated by these surrogate data generation methods with respect to nonverbal synchrony as a specific use of surrogate data generation, which can then be generalized for hypothesis testing of other psychological time series. © 2018 American Psychological Association. 
650 0 4 |a adult 
650 0 4 |a article 
650 0 4 |a Behavioral time series 
650 0 4 |a case report 
650 0 4 |a clinical article 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a cooperation 
650 0 4 |a Cooperative Behavior 
650 0 4 |a Data Interpretation, Statistical 
650 0 4 |a female 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a male 
650 0 4 |a Models, Psychological 
650 0 4 |a Models, Statistical 
650 0 4 |a motion 
650 0 4 |a Nonlinear dynamics 
650 0 4 |a nonlinear system 
650 0 4 |a nonverbal communication 
650 0 4 |a Nonverbal Communication 
650 0 4 |a Nonverbal synchrony 
650 0 4 |a null hypothesis 
650 0 4 |a Null-hypothesis testing 
650 0 4 |a physiology 
650 0 4 |a procedures 
650 0 4 |a psychological model 
650 0 4 |a psychology 
650 0 4 |a Psychology 
650 0 4 |a statistical analysis 
650 0 4 |a statistical model 
650 0 4 |a Surrogate data 
650 0 4 |a time factor 
650 0 4 |a Time Factors 
650 0 4 |a time series analysis 
700 1 |a Boker, S.M.  |e author 
700 1 |a Moulder, R.G.  |e author 
700 1 |a Ramseyer, F.  |e author 
700 1 |a Tschacher, W.  |e author 
773 |t Psychological Methods