Local Keisler Measures and NIP Formulas

We study generically stable measures in the local, NIP context. We show that in this setting, a measure is generically stable if and only if it admits a natural finite approximation. © 2019 The Association for Symbolic Logic.

Bibliographic Details
Main Author: Gannon, K. (Author)
Format: Article
Language:English
Published: Cambridge University Press 2019
Subjects:
NIP
Online Access:View Fulltext in Publisher
LEADER 00735nam a2200169Ia 4500
001 10.1017-jsl.2019.34
008 220511s2019 CNT 000 0 und d
020 |a 00224812 (ISSN) 
245 1 0 |a Local Keisler Measures and NIP Formulas 
260 0 |b Cambridge University Press  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1017/jsl.2019.34 
520 3 |a We study generically stable measures in the local, NIP context. We show that in this setting, a measure is generically stable if and only if it admits a natural finite approximation. © 2019 The Association for Symbolic Logic. 
650 0 4 |a generic stability 
650 0 4 |a Keisler measures 
650 0 4 |a NIP 
700 1 |a Gannon, K.  |e author 
773 |t Journal of Symbolic Logic