Multiple heat transport maxima in confined-rotating Rayleigh-Bénard convection

Moderate rotation and moderate horizontal confinement similarly enhance the heat transport in Rayleigh-Bénard convection (RBC). Here, we systematically investigate how these two types of flow stabilization together affect the heat transport. We conduct direct numerical simulations of confined-rotat...

Full description

Bibliographic Details
Main Authors: Hartmann, R. (Author), Klein Kranenbarg, L. (Author), Lohse, D. (Author), Stevens, R.J.A.M (Author), Verzicco, R. (Author)
Format: Article
Language:English
Published: Cambridge University Press 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02570nam a2200421Ia 4500
001 10.1017-jfm.2021.1031
008 220425s2022 CNT 000 0 und d
020 |a 00221120 (ISSN) 
245 1 0 |a Multiple heat transport maxima in confined-rotating Rayleigh-Bénard convection 
260 0 |b Cambridge University Press  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1017/jfm.2021.1031 
520 3 |a Moderate rotation and moderate horizontal confinement similarly enhance the heat transport in Rayleigh-Bénard convection (RBC). Here, we systematically investigate how these two types of flow stabilization together affect the heat transport. We conduct direct numerical simulations of confined-rotating RBC in a cylindrical set-up at Prandtl number Pr = 4.38, and various Rayleigh numbers 2 × 108 ≤ Ra ≤ 7 × 109. Within the parameter space of rotation (given as inverse Rossby number 0 ≤ Ro-1 ≤ 40) and confinement (given as height-to-diameter aspect ratio 2 ≤ Γ-1 ≤ 32), we observe three heat transport maxima. At lower, the combination of rotation and confinement can achieve larger heat transport than either rotation or confinement individually, whereas at higher, confinement alone is most effective in enhancing the heat transport. Further, we identify two effects enhancing the heat transport: (i) the ratio of kinetic and thermal boundary layer thicknesses controlling the efficiency of Ekman pumping, and (ii) the formation of a stable domain-spanning flow for an efficient vertical transport of the heat through the bulk. Their interfering efficiencies generate the multiple heat transport maxima. © The Author(s), 2022. Published by Cambridge University Press. 
650 0 4 |a Aspect ratio 
650 0 4 |a Aspect-ratio 
650 0 4 |a Benard convection 
650 0 4 |a Bénard convection 
650 0 4 |a Boundary layer flow 
650 0 4 |a Boundary layers 
650 0 4 |a Direct-numerical-simulation 
650 0 4 |a Efficiency 
650 0 4 |a Flow Stabilization 
650 0 4 |a Heat transport 
650 0 4 |a Natural convection 
650 0 4 |a Parameter spaces 
650 0 4 |a Prandtl number 
650 0 4 |a Rayleigh number 
650 0 4 |a Rossby numbers 
650 0 4 |a Rotating flow 
650 0 4 |a rotating flows 
650 0 4 |a rotating turbulence 
650 0 4 |a Rotating turbulence 
650 0 4 |a Rotation 
700 1 |a Hartmann, R.  |e author 
700 1 |a Klein Kranenbarg, L.  |e author 
700 1 |a Lohse, D.  |e author 
700 1 |a Stevens, R.J.A.M.  |e author 
700 1 |a Verzicco, R.  |e author 
773 |t Journal of Fluid Mechanics