|
|
|
|
LEADER |
02509nam a2200409Ia 4500 |
001 |
10.1017-S1351324919000214 |
008 |
220511s2019 CNT 000 0 und d |
020 |
|
|
|a 13513249 (ISSN)
|
245 |
1 |
0 |
|a A structured distributional model of sentence meaning and processing
|
260 |
|
0 |
|b Cambridge University Press
|c 2019
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.1017/S1351324919000214
|
520 |
3 |
|
|a Most compositional distributional semantic models represent sentence meaning with a single vector. In this paper, we propose a structured distributional model (SDM) that combines word embeddings with formal semantics and is based on the assumption that sentences represent events and situations. The semantic representation of a sentence is a formal structure derived from discourse representation theory and containing distributional vectors. This structure is dynamically and incrementally built by integrating knowledge about events and their typical participants, as they are activated by lexical items. Event knowledge is modelled as a graph extracted from parsed corpora and encoding roles and relationships between participants that are represented as distributional vectors. SDM is grounded on extensive psycholinguistic research showing that generalized knowledge about events stored in semantic memory plays a key role in sentence comprehension. We evaluate SDMon two recently introduced compositionality data sets, and our results show that combining a simple compositionalmodel with event knowledge constantly improves performances, even with dif ferent types of word embeddings. © 2019 Cambridge University Press.
|
650 |
0 |
4 |
|a Algebra
|
650 |
0 |
4 |
|a discourse representation theory
|
650 |
0 |
4 |
|a Discourse representation theory
|
650 |
0 |
4 |
|a Distributional models
|
650 |
0 |
4 |
|a distributional semantics
|
650 |
0 |
4 |
|a Distributional semantics
|
650 |
0 |
4 |
|a Embeddings
|
650 |
0 |
4 |
|a event knowledge
|
650 |
0 |
4 |
|a event knowledge
|
650 |
0 |
4 |
|a Formal methods
|
650 |
0 |
4 |
|a Formal Semantics
|
650 |
0 |
4 |
|a Formal structures
|
650 |
0 |
4 |
|a Knowledge management
|
650 |
0 |
4 |
|a Semantic representation
|
650 |
0 |
4 |
|a Semantics
|
650 |
0 |
4 |
|a sentence processing
|
650 |
0 |
4 |
|a Sentence processing
|
650 |
0 |
4 |
|a word embeddings
|
700 |
1 |
|
|a Blache, P.
|e author
|
700 |
1 |
|
|a Chersoni, E.
|e author
|
700 |
1 |
|
|a Huang, C.-R.
|e author
|
700 |
1 |
|
|a Lenci, A.
|e author
|
700 |
1 |
|
|a Pannitto, L.
|e author
|
700 |
1 |
|
|a Santus, E.
|e author
|
773 |
|
|
|t Natural Language Engineering
|