Estimating increasing diversity and dissipative loss of critical metals in the aluminum automotive sector

As the demand for and consumption of products and services grow in the US, so does the concern for sustainable material usage. In the automotive industry, major sustainability issues revolve around advocating for improved fuel economy and the incorporation of materials with higher recyclability in o...

Full description

Bibliographic Details
Main Authors: Arowosola, A. (Author), Gaustad, G. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2019
Subjects:
tin
Online Access:View Fulltext in Publisher
LEADER 03766nam a2200721Ia 4500
001 10.1016-j.resconrec.2019.06.016
008 220511s2019 CNT 000 0 und d
020 |a 09213449 (ISSN) 
245 1 0 |a Estimating increasing diversity and dissipative loss of critical metals in the aluminum automotive sector 
260 0 |b Elsevier B.V.  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.resconrec.2019.06.016 
520 3 |a As the demand for and consumption of products and services grow in the US, so does the concern for sustainable material usage. In the automotive industry, major sustainability issues revolve around advocating for improved fuel economy and the incorporation of materials with higher recyclability in order to reduce greenhouse gas (GHG) emissions. A popular strategy to achieve this in the automotive industry is light-weighting. Many studies in this field are focused on the environmental benefits of light-weighting, that is, how replacement of traditional steel in the automotive industry with aluminum, for instance, will help reduce the amount of CO2-eq emissions in the environment. The increasing use of aluminum in the industry for differing automotive applications broadens the range of alloying elements. Unfortunately, many of these elements are dissipatively lost and also deemed critical. Furthermore, some of the alloying elements accumulate as tramp (unwanted) elements in the secondary aluminum stream, hence posing as a barrier to effective recycling, thus leading to material and economic losses. We quantified the material losses and analyzed the economic losses attributed to the dissipation of critical metals and also examined the attendant accumulation of tramp elements in the recycled aluminum stream. Our results indicate that to achieve a more circular economy requires investment and further development of a) operational blending and batching strategies that comprehend alloying additions and the inherent variability of their actual composition, and b) economically feasible material identification and sorting technologies that will help in abating these material losses and associated economic losses. © 2019 Elsevier B.V. 
650 0 4 |a alloy 
650 0 4 |a Alloying 
650 0 4 |a Alloying elements 
650 0 4 |a aluminum 
650 0 4 |a aluminum 
650 0 4 |a Aluminum 
650 0 4 |a Aluminum 
650 0 4 |a Aluminum coated steel 
650 0 4 |a Article 
650 0 4 |a automobile industry 
650 0 4 |a automobile industry 
650 0 4 |a Automotive applications 
650 0 4 |a Automotive industry 
650 0 4 |a Blending 
650 0 4 |a Circular economy 
650 0 4 |a Circular economy 
650 0 4 |a consumption behavior 
650 0 4 |a copper 
650 0 4 |a Critical metals 
650 0 4 |a demand analysis 
650 0 4 |a economic aspect 
650 0 4 |a economic development 
650 0 4 |a economic status 
650 0 4 |a Environmental benefits 
650 0 4 |a estimation method 
650 0 4 |a Fuel economy 
650 0 4 |a Gas emissions 
650 0 4 |a Greenhouse gases 
650 0 4 |a heavy metal 
650 0 4 |a iron 
650 0 4 |a Lightweight 
650 0 4 |a Lightweight 
650 0 4 |a Losses 
650 0 4 |a magnesium 
650 0 4 |a manganese 
650 0 4 |a Material identification 
650 0 4 |a Products and services 
650 0 4 |a recycling 
650 0 4 |a Recycling 
650 0 4 |a silicon 
650 0 4 |a sustainability 
650 0 4 |a Sustainability issues 
650 0 4 |a Sustainable development 
650 0 4 |a Sustainable materials 
650 0 4 |a tin 
650 0 4 |a traffic and transport 
650 0 4 |a United States 
650 0 4 |a zinc 
700 1 |a Arowosola, A.  |e author 
700 1 |a Gaustad, G.  |e author 
773 |t Resources, Conservation and Recycling