How dusty was the last glacial maximum over Europe?

Our study focuses on European loess sequences, particularly the eolian intervals in between the observed pedogenic units. The classical concept of soil formation from parent material is reformulated to estimate of the duration and the associated sedimentation rate (SR) and mass accumulation rate (MA...

Full description

Bibliographic Details
Main Authors: Antoine, P. (Author), Rousseau, D.-D (Author), Sun, Y. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
Description
Summary:Our study focuses on European loess sequences, particularly the eolian intervals in between the observed pedogenic units. The classical concept of soil formation from parent material is reformulated to estimate of the duration and the associated sedimentation rate (SR) and mass accumulation rate (MAR) of these paleodust intervals. We show that the Greenland Stadial (GS) duration in European loess deposits includes the thickness of the overlying pedogenic unit, which in fact developed downward into the upper part of the eolian unit. The lower stratigraphical limit of the eolian unit overlying the pedogenic unit corresponds to the restart of the dust sedimentation of the younger GS. We illustrate this interpretation first by computing both SRs and MARs first for the Nussloch key sequence, the most complete European series. The correlation between Nussloch and other European loess sequences, located along a 1800 km longitudinal transect, allows computation of SR and MAR for several identified GS events. Comparing GS from marine and ice core records, our study shows that the two last Bond cycles are preserved in every European eolian record. Bulk SR and MAR are estimated and compared for these two Bond cycles, showing the highest SRs and MARs in western Europe. These indices also indicate that the last stadials, embedding an Henrich event, were not the dustiest in every Bond cycle. Our estimated MAR also differ from previously published computations, which did not take into account the various pedogenic units present in the studied loess sequences. The bulk SR and MAR estimates computed for the two last Bond Cycles from Chinese sequences from the Loess Plateau indicate lower atmospheric dust than in Europe during the Last Glacial Maximum. SR and MAR estimates computed from the fine-grained material for European records fit with Earth System model reconstructions. © 2020 Elsevier Ltd
ISBN:02773791 (ISSN)
DOI:10.1016/j.quascirev.2020.106775