Adiabatic soliton management: Controlling solitary wave motion while keeping the wave envelope unchanged

We describe how to control the motion – both speed and propagation direction – of a nonlinear traveling wave in real time via soliton management with time-varying dispersion/diffusion and loss/gain terms. When carried out subject to certain parameter constraints we derive, the approach allows for re...

Full description

Bibliographic Details
Main Author: Van Gorder, R.A (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02371nam a2200373Ia 4500
001 10.1016-j.physleta.2022.128284
008 220718s2022 CNT 000 0 und d
020 |a 03759601 (ISSN) 
245 1 0 |a Adiabatic soliton management: Controlling solitary wave motion while keeping the wave envelope unchanged 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.physleta.2022.128284 
520 3 |a We describe how to control the motion – both speed and propagation direction – of a nonlinear traveling wave in real time via soliton management with time-varying dispersion/diffusion and loss/gain terms. When carried out subject to certain parameter constraints we derive, the approach allows for real-time manipulation of wave motion without compromising the structure or stability of the wave, maintaining strict adiabaticity in time. This makes our approach a promising tool for physical systems which admit a degree of control through adjustable dispersion and loss/gain terms, including problems arising in nonlinear optics, atomic physics, Bose-Einstein condensates, and thermally driven chemical reactions, where one is interested in modifying the position or speed of a wave while still maintaining adiabaticity. We illustrate both the utility and simplicity of the method through several canonical examples, demonstrating how the motion of KdV solitons, Fisher-KPP solitary wavefronts, BBM solitons, nonlinear Klein-Gordon equations, and interacting nonlinear waves in a vector NLS system can be controlled in real time. © 2022 Elsevier B.V. 
650 0 4 |a Adiabaticity 
650 0 4 |a Atomic physics 
650 0 4 |a Bose-Einstein condensation 
650 0 4 |a Dispersion (waves) 
650 0 4 |a Dispersion management 
650 0 4 |a Dispersion-management 
650 0 4 |a Equations of motion 
650 0 4 |a Nonlinear equations 
650 0 4 |a Nonlinear optics 
650 0 4 |a Nonlinear travelling waves 
650 0 4 |a Propagation direction 
650 0 4 |a Real- time 
650 0 4 |a Soliton management 
650 0 4 |a Solitons 
650 0 4 |a Statistical mechanics 
650 0 4 |a Wave envelope 
650 0 4 |a Wave motions 
650 0 4 |a Wavefronts 
650 0 4 |a Wavespeed 
650 0 4 |a Wavespeed control 
700 1 |a Van Gorder, R.A.  |e author 
773 |t Physics Letters, Section A: General, Atomic and Solid State Physics