Above-room-temperature ferroelectricity and piezoelectric activity of dimethylglycinium-dimethylglycine chloride

Heavy-metal-free ferroelectrics are sought as environmentally compatible alternatives to commonly used inorganic oxides. Here, we demonstrate direct evidence of the ferroelectric properties of a hybrid organic–inorganic material, dimethylglycinium-dimethylglycine chloride. At room temperature, the c...

Full description

Bibliographic Details
Main Authors: Czarnecki, P. (Author), Ghazaryan, V.V (Author), Petrosyan, A.M (Author), Szafrański, M. (Author), Tylczyński, Z. (Author), Wiesner, M. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02853nam a2200529Ia 4500
001 10.1016-j.matdes.2022.110893
008 220718s2022 CNT 000 0 und d
020 |a 02641275 (ISSN) 
245 1 0 |a Above-room-temperature ferroelectricity and piezoelectric activity of dimethylglycinium-dimethylglycine chloride 
260 0 |b Elsevier Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.matdes.2022.110893 
520 3 |a Heavy-metal-free ferroelectrics are sought as environmentally compatible alternatives to commonly used inorganic oxides. Here, we demonstrate direct evidence of the ferroelectric properties of a hybrid organic–inorganic material, dimethylglycinium-dimethylglycine chloride. At room temperature, the compound crystallizes in the polar space group P21 and exhibits a switchable spontaneous polarization of 1.9 μC cm−2. Ferroelectric properties are preserved in a wide temperature range up to about 401 K, where the crystal undergoes the transition to the paraelectric phase of the space group P21/c. The temperature-dependent single-crystal X-ray diffraction study and the calorimetric data indicate an order–disorder contribution to the transition mechanism, which is consistent with the critical slowing down of the dielectric relaxation observed near the Curie point. The spontaneous polarization results from ionic displacements that are induced by changes in the disordering of the dimeric cations. In the ferroelectric phase, the crystal exhibits remarkable piezoelectric activity. The electromechanical and elastic properties of the material were thoroughly characterized. © 2022 The Authors 
650 0 4 |a Amino acids 
650 0 4 |a Calorimetry 
650 0 4 |a Chlorine compounds 
650 0 4 |a Crystallography 
650 0 4 |a Curie point 
650 0 4 |a Curie points 
650 0 4 |a Curie temperature 
650 0 4 |a Dielectric relaxation 
650 0 4 |a Dimethylglycine 
650 0 4 |a Environmentally compatible 
650 0 4 |a Ferroelectric materials 
650 0 4 |a Ferroelectric property 
650 0 4 |a Ferroelectricity 
650 0 4 |a Ferroelectrics 
650 0 4 |a Glycine 
650 0 4 |a Heavy metals 
650 0 4 |a Hybrid organic-inorganic materials 
650 0 4 |a Inorganic oxides 
650 0 4 |a Metal free 
650 0 4 |a Phase transition 
650 0 4 |a Piezoelectric activity 
650 0 4 |a Piezoelectric effect 
650 0 4 |a Piezoelectricity 
650 0 4 |a Polar space group 
650 0 4 |a Polarization 
650 0 4 |a Single crystals 
650 0 4 |a Spontaneous polarization 
650 0 4 |a Spontaneous polarizations 
700 1 |a Czarnecki, P.  |e author 
700 1 |a Ghazaryan, V.V.  |e author 
700 1 |a Petrosyan, A.M.  |e author 
700 1 |a Szafrański, M.  |e author 
700 1 |a Tylczyński, Z.  |e author 
700 1 |a Wiesner, M.  |e author 
773 |t Materials and Design