Temperate and chronic virus competition leads to low lysogen frequency

The canonical bacteriophage is obligately lytic: the virus infects a bacterium and hijacks cell functions to produce large numbers of new viruses which burst from the cell. These viruses are well-studied, but there exist a wide range of coexisting virus lifestyles that are less understood. Temperate...

Full description

Bibliographic Details
Main Authors: Clifton, S.M (Author), Rapti, Z. (Author), Whitaker, R.J (Author)
Format: Article
Language:English
Published: Academic Press 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02720nam a2200553Ia 4500
001 10.1016-j.jtbi.2021.110710
008 220427s2021 CNT 000 0 und d
020 |a 00225193 (ISSN) 
245 1 0 |a Temperate and chronic virus competition leads to low lysogen frequency 
260 0 |b Academic Press  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jtbi.2021.110710 
520 3 |a The canonical bacteriophage is obligately lytic: the virus infects a bacterium and hijacks cell functions to produce large numbers of new viruses which burst from the cell. These viruses are well-studied, but there exist a wide range of coexisting virus lifestyles that are less understood. Temperate viruses exhibit both a lytic cycle and a latent (lysogenic) cycle, in which viral genomes are integrated into the bacterial host. Meanwhile, chronic (persistent) viruses use cell functions to produce more viruses without killing the cell; chronic viruses may also exhibit a latent stage in addition to the productive stage. Here, we study the ecology of these competing viral strategies. We demonstrate the conditions under which each strategy is dominant, which aids in control of human bacterial infections using viruses. We find that low lysogen frequencies provide competitive advantages for both virus types; however, chronic viruses maximize steady state density by eliminating lysogeny entirely, while temperate viruses exhibit a non-zero ‘sweet spot’ lysogen frequency. Viral steady state density maximization leads to coexistence of temperate and chronic viruses, explaining the presence of multiple viral strategies in natural environments. © 2021 Elsevier Ltd 
650 0 4 |a article 
650 0 4 |a Bacteria 
650 0 4 |a Bacteria 
650 0 4 |a Bacteria (microorganisms) 
650 0 4 |a bacteriophage 
650 0 4 |a bacteriophage 
650 0 4 |a Bacteriophages 
650 0 4 |a bacterium 
650 0 4 |a bacterium 
650 0 4 |a cell 
650 0 4 |a cell function 
650 0 4 |a competition 
650 0 4 |a controlled study 
650 0 4 |a ecology 
650 0 4 |a genetics 
650 0 4 |a genome 
650 0 4 |a Genome, Viral 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Infection 
650 0 4 |a infectivity 
650 0 4 |a Latent 
650 0 4 |a lysogenization 
650 0 4 |a lysogenization 
650 0 4 |a Lysogeny 
650 0 4 |a Mathematical model 
650 0 4 |a nonhuman 
650 0 4 |a numerical model 
650 0 4 |a Phage 
650 0 4 |a Recovery 
650 0 4 |a steady state 
650 0 4 |a virus genome 
650 0 4 |a virus typing 
700 1 |a Clifton, S.M.  |e author 
700 1 |a Rapti, Z.  |e author 
700 1 |a Whitaker, R.J.  |e author 
773 |t Journal of Theoretical Biology