Customizable adaptive regularization techniques for B-spline modeling

B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to mini...

Full description

Bibliographic Details
Main Authors: Grindeanu, I. (Author), Lenz, D. (Author), Mahadevan, V. (Author), Peterka, T. (Author), Yeh, R. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02618nam a2200361Ia 4500
001 10.1016-j.jocs.2023.102037
008 230529s2023 CNT 000 0 und d
020 |a 18777503 (ISSN) 
245 1 0 |a Customizable adaptive regularization techniques for B-spline modeling 
260 0 |b Elsevier B.V.  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jocs.2023.102037 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159554119&doi=10.1016%2fj.jocs.2023.102037&partnerID=40&md5=496b88db204706575adadf178d0323fa 
520 3 |a B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The proposed method selectively incorporates regularization terms based on first and second derivatives to maintain model accuracy while minimizing numerical artifacts. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations. In addition, a key tuning parameter is highlighted and the effects of this parameter are presented in detail. This paper is an extension of our previous conference paper at the 2022 International Conference on Computational Science (ICCS) (Lenz et al., 2022) [1]. © 2023 Elsevier B.V. 
650 0 4 |a Adaptive regularization 
650 0 4 |a B splines 
650 0 4 |a B-spline 
650 0 4 |a B-spline models 
650 0 4 |a Customizable 
650 0 4 |a Data set 
650 0 4 |a Functional approximation 
650 0 4 |a Interpolation 
650 0 4 |a Numerical methods 
650 0 4 |a Regularisation 
650 0 4 |a Regularization 
650 0 4 |a Regularization technique 
650 0 4 |a Scientific data 
650 0 4 |a Spurious oscillations 
700 1 0 |a Grindeanu, I.  |e author 
700 1 0 |a Lenz, D.  |e author 
700 1 0 |a Mahadevan, V.  |e author 
700 1 0 |a Peterka, T.  |e author 
700 1 0 |a Yeh, R.  |e author 
773 |t Journal of Computational Science