A twisted complex Brunn-Minkowski theorem

In his Annals of Mathematics paper [2], Berndtsson proves an important result on the Nakano positivity of holomorphic infinite-rank vector bundles whose fibers are Hilbert spaces consisting of holomorphic L2-functions with respect to a family of weight functions {e−φ(t,⋅)}t∈U, varying in t∈U⊂Cm, ove...

Full description

Bibliographic Details
Main Author: Ainasse, E.M (Author)
Format: Article
Language:English
Published: Academic Press Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01389nam a2200181Ia 4500
001 10.1016-j.jmaa.2022.126431
008 220718s2022 CNT 000 0 und d
020 |a 0022247X (ISSN) 
245 1 0 |a A twisted complex Brunn-Minkowski theorem 
260 0 |b Academic Press Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jmaa.2022.126431 
520 3 |a In his Annals of Mathematics paper [2], Berndtsson proves an important result on the Nakano positivity of holomorphic infinite-rank vector bundles whose fibers are Hilbert spaces consisting of holomorphic L2-functions with respect to a family of weight functions {e−φ(t,⋅)}t∈U, varying in t∈U⊂Cm, over a pseudoconvex domain. Using a variant of Hörmander's theorem due to Donnelly and Fefferman, we show that Berndtsson's Nakano positivity result holds under different (in fact, more general) curvature assumptions. This is of particular interest when the manifold admits a negative non-constant plurisubharmonic function, as these curvature assumptions then allow for some curvature negativity. We describe this setting as a “twisted” setting. © 2022 Elsevier Inc. 
650 0 4 |a Bergman kernels 
650 0 4 |a Curvature negativity 
650 0 4 |a L2 estimates for dbar 
650 0 4 |a Nakano positivity theorem 
700 1 |a Ainasse, E.M.  |e author 
773 |t Journal of Mathematical Analysis and Applications