Missing dependent variables in fixed-effects models

This paper considers estimation of linear fixed-effects models in which the dependent variable may be missing. For cross-sectional units with dependent variables missing, use of covariate information from all time periods can provide efficiency gains relative to complete-data methods. A classical mi...

Full description

Bibliographic Details
Main Author: Abrevaya, J. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2019
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01903nam a2200301Ia 4500
001 10.1016-j.jeconom.2018.12.011
008 220511s2019 CNT 000 0 und d
020 |a 03044076 (ISSN) 
245 1 0 |a Missing dependent variables in fixed-effects models 
260 0 |b Elsevier Ltd  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jeconom.2018.12.011 
520 3 |a This paper considers estimation of linear fixed-effects models in which the dependent variable may be missing. For cross-sectional units with dependent variables missing, use of covariate information from all time periods can provide efficiency gains relative to complete-data methods. A classical minimum distance (CMD) estimator based upon Chamberlain (1982, 1984), which is consistent under a missing-at-random (MAR) type assumption, is proposed for the static fixed-effects model. In certain circumstances, it is shown that “within” variation in the dependent variable is not even required for identification of the model parameters. The CMD estimation approach is extended to the case of (autoregressive) fixed-effects models with lagged dependent variables. Monte Carlo simulations investigate the performance of the CMD approach relative to existing methods. Extensions to models with sequential exogeneity and missing covariates are also discussed. © 2018 Elsevier B.V. 
650 0 4 |a Classical minimum distance 
650 0 4 |a Dependent variables 
650 0 4 |a Estimation approaches 
650 0 4 |a Fixed effects 
650 0 4 |a Fixed effects 
650 0 4 |a Fixed effects models 
650 0 4 |a Intelligent systems 
650 0 4 |a Linear projection 
650 0 4 |a Linear projections 
650 0 4 |a Minimum distance 
650 0 4 |a Missing at randoms 
650 0 4 |a Missing data 
650 0 4 |a Missing data 
650 0 4 |a Monte Carlo methods 
700 1 |a Abrevaya, J.  |e author 
773 |t Journal of Econometrics