Effects of system design and Co-product treatment strategies on the life cycle performance of biofuels from microalgae

This study presents a life cycle greenhouse gas and energy assessment for two algal biofuel production pathways: biodiesel produced through lipid extraction (LE) and renewable diesel produced through hydrothermal liquefaction (HTL). The two production pathways generate different co-products, which a...

Full description

Bibliographic Details
Main Authors: Kendall, A. (Author), Zhang, Y. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2019
Subjects:
LCA
Online Access:View Fulltext in Publisher
LEADER 02583nam a2200445Ia 4500
001 10.1016-j.jclepro.2019.05.137
008 220511s2019 CNT 000 0 und d
020 |a 09596526 (ISSN) 
245 1 0 |a Effects of system design and Co-product treatment strategies on the life cycle performance of biofuels from microalgae 
260 0 |b Elsevier Ltd  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.jclepro.2019.05.137 
520 3 |a This study presents a life cycle greenhouse gas and energy assessment for two algal biofuel production pathways: biodiesel produced through lipid extraction (LE) and renewable diesel produced through hydrothermal liquefaction (HTL). The two production pathways generate different co-products, which are handled through allocation in life cycle assessment-based analyses. The method and assumptions used for co-product allocation affect the performance of the analyzed fuels, and are thus examined through scenario analysis; five co-product allocation strategies are tested for the LE pathway and six are tested for the HTL pathway. After allocation, the carbon intensity of renewable diesel varies from 36 to 54 gCO2e/MJ, and the primary energy consumption of renewable diesel varies from 0.7 to 1.2 MJ/MJ; while the carbon intensity of biodiesel ranges, remarkably, from −59 to 125 gCO2e/MJ, and the primary energy consumption of biodiesel ranges from 0.1 to 1.7 MJ/MJ. The optimal algal oil production pathway is determined by comparing open-loop and closed-loop systems, considering not only the estimated net environmental impacts, but also the confidence or uncertainty of those outcomes. © 2019 Elsevier Ltd 
650 0 4 |a Artificial life 
650 0 4 |a Biodiesel 
650 0 4 |a Carbon 
650 0 4 |a Carbon intensity 
650 0 4 |a Closed loop systems 
650 0 4 |a Closed-loop system 
650 0 4 |a Diesel engines 
650 0 4 |a Ecodesign 
650 0 4 |a Energy 
650 0 4 |a Energy utilization 
650 0 4 |a Environmental impact 
650 0 4 |a Extraction 
650 0 4 |a Greenhouse gases 
650 0 4 |a Hydrothermal liquefaction 
650 0 4 |a Hydrothermal liquefactions 
650 0 4 |a LCA 
650 0 4 |a Life cycle 
650 0 4 |a Life Cycle Assessment (LCA) 
650 0 4 |a Life-cycle performance 
650 0 4 |a Lipid extraction 
650 0 4 |a Liquefaction 
650 0 4 |a Primary energy consumption 
650 0 4 |a Product design 
650 0 4 |a Production pathways 
650 0 4 |a Uncertainty analysis 
700 1 |a Kendall, A.  |e author 
700 1 |a Zhang, Y.  |e author 
773 |t Journal of Cleaner Production