Topological regularization with information filtering networks

This paper introduces a novel methodology to perform topological regularization in multivariate probabilistic modeling by using sparse, complex, networks which represent the system's dependency structure and are called information filtering networks (IFN). This methodology can be directly appli...

Full description

Bibliographic Details
Main Author: Aste, T. (Author)
Format: Article
Language:English
Published: Elsevier Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02305nam a2200385Ia 4500
001 10.1016-j.ins.2022.06.007
008 220718s2022 CNT 000 0 und d
020 |a 00200255 (ISSN) 
245 1 0 |a Topological regularization with information filtering networks 
260 0 |b Elsevier Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ins.2022.06.007 
520 3 |a This paper introduces a novel methodology to perform topological regularization in multivariate probabilistic modeling by using sparse, complex, networks which represent the system's dependency structure and are called information filtering networks (IFN). This methodology can be directly applied to covariance selection problem providing an instrument for sparse probabilistic modeling with both linear and non-linear multivariate probability distributions such as the elliptical and generalized hyperbolic families. It can also be directly implemented for topological regularization of multicollinear regression. In this paper, I describe in detail an application to sparse modeling with multivariate Student-t. A specific expectation–maximization likelihood maximization procedure over a sparse chordal network representation is proposed for this sparse Student-t case. Examples with real data from stock prices log-returns and from artificially generated data demonstrate applicability, performances, robustness and potentials of this methodology. © 2022 The Author(s) 
650 0 4 |a Chow-liu tree 
650 0 4 |a Chow-Liu Trees 
650 0 4 |a Complex networks 
650 0 4 |a Complex systems 
650 0 4 |a Covariance selection 
650 0 4 |a Expectation Maximization 
650 0 4 |a IFN regression 
650 0 4 |a Information filtering 
650 0 4 |a Information filtering network 
650 0 4 |a Information filtering network regression 
650 0 4 |a Information filtering networks 
650 0 4 |a Inverse covariance 
650 0 4 |a Inverse problems 
650 0 4 |a Maximum principle 
650 0 4 |a Probability distributions 
650 0 4 |a Regression analysis 
650 0 4 |a Regularisation 
650 0 4 |a Sparse expectation-maximization 
650 0 4 |a Sparse inverse covariance 
650 0 4 |a Topological regularization 
650 0 4 |a Topology 
700 1 |a Aste, T.  |e author 
773 |t Information Sciences