Enamel-like tissue regeneration by using biomimetic enamel matrix proteins

Enamel regeneration currently -is limited by our inability to duplicate artificially its complicated and well-aligned hydroxyapatite structure. The initial formation of enamel occurs in enamel organs where the ameloblasts secret enamel extracellular matrix formed a unique gel-like microenvironment....

Full description

Bibliographic Details
Main Authors: Cao, C.Y (Author), Fang, Z. (Author), Guo, M. (Author), Li, Q. (Author), Wong, H.M (Author), Zhou, Q. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03968nam a2200889Ia 4500
001 10.1016-j.ijbiomac.2021.06.028
008 220427s2021 CNT 000 0 und d
020 |a 01418130 (ISSN) 
245 1 0 |a Enamel-like tissue regeneration by using biomimetic enamel matrix proteins 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ijbiomac.2021.06.028 
520 3 |a Enamel regeneration currently -is limited by our inability to duplicate artificially its complicated and well-aligned hydroxyapatite structure. The initial formation of enamel occurs in enamel organs where the ameloblasts secret enamel extracellular matrix formed a unique gel-like microenvironment. The enamel extracellular matrix is mainly composed by amelogenin and non-amelogenin. In this study, an innovative strategy was proposed to regenerate enamel-like tissue by constructing a microenvironment using biomimetic enamel matrix proteins (biomimetic EMPs) composed of modified leucine-rich amelogenin peptide (mLRAP) and non-amelogenin analog (NAA). Impressively, the regenerated enamel in this biomimetic EMPs on etched enamel surface produced prismatic structures, and showed similar mechanical properties to natural enamel. The results of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that regenerated crystal was hydroxyapatite. Molecular dynamics simulation analysis showed the binding energy between mLRAP and NAA were electrostatic forces and Van der Walls. These results introduced a promising strategy to induce crystal growth of enamel-like hydroxyapatite for biomimetic reproduction of materials with complicated hierarchical microstructures. © 2021 The Authors 
650 0 4 |a amelogenesis 
650 0 4 |a Amelogenesis 
650 0 4 |a amelogenin 
650 0 4 |a Article 
650 0 4 |a biomimetic material 
650 0 4 |a Biomimetic Materials 
650 0 4 |a Biomimetic regeneration 
650 0 4 |a biomimetics 
650 0 4 |a cell culture 
650 0 4 |a cell proliferation 
650 0 4 |a Cell Proliferation 
650 0 4 |a Cells, Cultured 
650 0 4 |a chemical structure 
650 0 4 |a chemistry 
650 0 4 |a controlled study 
650 0 4 |a crystal structure 
650 0 4 |a crystallization 
650 0 4 |a Crystallization 
650 0 4 |a Dental Enamel 
650 0 4 |a Dental Enamel Proteins 
650 0 4 |a enamel 
650 0 4 |a enamel 
650 0 4 |a Enamel 
650 0 4 |a enamel matrix proteins 
650 0 4 |a enamel protein 
650 0 4 |a Extracellular matrix proteins 
650 0 4 |a Fourier transform infrared spectroscopy 
650 0 4 |a hierarchical microstructure 
650 0 4 |a human 
650 0 4 |a human tissue 
650 0 4 |a hydroxyapatite 
650 0 4 |a leucine-rich amelogenin peptide 
650 0 4 |a mechanics 
650 0 4 |a mesenchymal stem cell 
650 0 4 |a Mesenchymal Stem Cells 
650 0 4 |a metabolism 
650 0 4 |a microenvironment 
650 0 4 |a modified leucine rich amelogenin peptide 
650 0 4 |a molecular docking 
650 0 4 |a Molecular Docking Simulation 
650 0 4 |a molecular dynamics 
650 0 4 |a Molecular Dynamics Simulation 
650 0 4 |a molecular interaction 
650 0 4 |a protein conformation 
650 0 4 |a Protein Conformation 
650 0 4 |a regeneration 
650 0 4 |a Regeneration 
650 0 4 |a scleroprotein 
650 0 4 |a static electricity 
650 0 4 |a structure activity relation 
650 0 4 |a Structure-Activity Relationship 
650 0 4 |a tissue engineering 
650 0 4 |a Tissue Engineering 
650 0 4 |a tissue regeneration 
650 0 4 |a ultrastructure 
650 0 4 |a unclassified drug 
650 0 4 |a Van der Walls 
650 0 4 |a X ray diffraction 
700 1 |a Cao, C.Y.  |e author 
700 1 |a Fang, Z.  |e author 
700 1 |a Guo, M.  |e author 
700 1 |a Li, Q.  |e author 
700 1 |a Wong, H.M.  |e author 
700 1 |a Zhou, Q.  |e author 
773 |t International Journal of Biological Macromolecules