Detecting structural and functional neuroplasticity in elite ice-skating athletes

Using resting-state fMRI, this study investigated long-term ice-skating training related changes in elite ice-skating athletes and compared them to healthy age-matched non-athletes under resting-state conditions. Significant differences were found in both structural and functional plasticity. Specif...

Full description

Bibliographic Details
Main Authors: Cao, C. (Author), Liu, J. (Author), Liu, R. (Author), Liu, Y. (Author), Zhang, K. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
ice
Ice
Online Access:View Fulltext in Publisher
LEADER 02877nam a2200553Ia 4500
001 10.1016-j.humov.2021.102795
008 220427s2021 CNT 000 0 und d
020 |a 01679457 (ISSN) 
245 1 0 |a Detecting structural and functional neuroplasticity in elite ice-skating athletes 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.humov.2021.102795 
520 3 |a Using resting-state fMRI, this study investigated long-term ice-skating training related changes in elite ice-skating athletes and compared them to healthy age-matched non-athletes under resting-state conditions. Significant differences were found in both structural and functional plasticity. Specifically, elite ice-skating athletes showed higher gray matter volume in the posterior cerebellum, frontal lobe, temporal lobe, posterior cingulate, caudate, and thalamus. The functional plasticity changes were primarily concentrated in the posterior cerebellar lobe. Additionally, stronger connectivity between the posterior cerebellar lobe and fusiform gyrus was also found in elite ice-skating athletes. Overall, the results are consistent with other studies that concluded long-term professional motor skill training can cause structural and functional plasticity in the regions of the brain related to motor planning, execution, and supervision. Both structural plasticity and functional plasticity are primarily enhanced in the posterior cerebellum. These changes may be related to the outstanding capability of speed and coordination caused by long-term ice-skating training. Present results add new evidence and may help us to understand the neural mechanisms of long-term motor skill training. © 2021 Tsinghua University 
650 0 4 |a article 
650 0 4 |a athlete 
650 0 4 |a athlete 
650 0 4 |a Athletes 
650 0 4 |a caudate nucleus 
650 0 4 |a cerebellum 
650 0 4 |a Cerebellum 
650 0 4 |a controlled study 
650 0 4 |a frontal lobe 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a fusiform gyrus 
650 0 4 |a gray matter volume 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a ice 
650 0 4 |a Ice 
650 0 4 |a Ice-skating 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a motor performance 
650 0 4 |a nerve cell plasticity 
650 0 4 |a nerve cell plasticity 
650 0 4 |a Neuronal Plasticity 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a Plasticity 
650 0 4 |a posterior cingulate 
650 0 4 |a Resting-state fMRI 
650 0 4 |a skating 
650 0 4 |a Skating 
650 0 4 |a structure activity relation 
650 0 4 |a thalamus 
650 0 4 |a velocity 
700 1 |a Cao, C.  |e author 
700 1 |a Liu, J.  |e author 
700 1 |a Liu, R.  |e author 
700 1 |a Liu, Y.  |e author 
700 1 |a Zhang, K.  |e author 
773 |t Human Movement Science