A simple machine learning-based framework for faster multi-scale simulations of path-independent materials at large strains

Coupled multi-scale finite element analyses have gained traction over the last years due to the increasing available computational resources. Nevertheless, in the pursuit of accurate results within a reasonable time frame, replacing these high-fidelity micromechanical simulations with reduced-order...

Full description

Bibliographic Details
Main Authors: Andrade Pires, F.M (Author), Cardoso Coelho, R.P (Author), Cardoso, J.S (Author), Carvalho Alves, A.F (Author), Couto Carneiro, A.M (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2023
Subjects:
RVE
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02842nam a2200397Ia 4500
001 10.1016-j.finel.2023.103956
008 230529s2023 CNT 000 0 und d
020 |a 0168874X (ISSN) 
245 1 0 |a A simple machine learning-based framework for faster multi-scale simulations of path-independent materials at large strains 
260 0 |b Elsevier B.V.  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.finel.2023.103956 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159571128&doi=10.1016%2fj.finel.2023.103956&partnerID=40&md5=22fe1d65455b7447a5d6dd05d682ff23 
520 3 |a Coupled multi-scale finite element analyses have gained traction over the last years due to the increasing available computational resources. Nevertheless, in the pursuit of accurate results within a reasonable time frame, replacing these high-fidelity micromechanical simulations with reduced-order data-driven models has been explored recently by the modelling community. In this work, two classes of machine learning models are trained for a porous hyperelastic microstructure to predict (i) whether the microscopic equilibrium problem is likely to fail and (ii) the stress–strain response. The former may be used to identify critical macroscopic points where one may fall back to the high-fidelity analysis and possibly apply convergence bowl-widening techniques. For the latter, both a linear regression with polynomial features and artificial Neural Networks have been used, and the required stress–strain derivatives for solving the equilibrium problem have been derived analytically. A weight regularisation is introduced to stabilise the tangent operator and several strategies are discussed for imposing null stresses in undeformed configurations for both regression models. The regression techniques, here analysed exclusively in the context of porous hyperelastic materials, evidence very promising prospects to accelerate multi-scale analyses of solids under large deformation. © 2023 The Author(s) 
650 0 4 |a Elasticity 
650 0 4 |a Equilibrium problem 
650 0 4 |a Finite element analyse 
650 0 4 |a Large strains 
650 0 4 |a Linear regression 
650 0 4 |a Machine learning 
650 0 4 |a Machine-learning 
650 0 4 |a Multiscale modeling 
650 0 4 |a Multi-scale modelling 
650 0 4 |a Multi-scale simulation 
650 0 4 |a Multi-scales 
650 0 4 |a Neural networks 
650 0 4 |a Neural-networks 
650 0 4 |a Regression analysis 
650 0 4 |a RVE 
650 0 4 |a Simple++ 
650 0 4 |a Strain 
700 1 0 |a Andrade Pires, F.M.  |e author 
700 1 0 |a Cardoso Coelho, R.P.  |e author 
700 1 0 |a Cardoso, J.S.  |e author 
700 1 0 |a Carvalho Alves, A.F.  |e author 
700 1 0 |a Couto Carneiro, A.M.  |e author 
773 |t Finite Elements in Analysis and Design