Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm

The accurate classification of marsh vegetation is an important prerequisite for wetland management and protection. In this study, the Honghe National Nature Reserve was used as the research area. The VV and VH polarized backscattering coefficients of Sentinel-1B, the polarimetric decomposition para...

Full description

Bibliographic Details
Main Authors: Fan, D. (Author), Fu, B. (Author), Gao, E. (Author), He, H. (Author), Huang, L. (Author), Liu, L. (Author), Sun, J. (Author), Xie, S. (Author), Zuo, P. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 05034nam a2200733Ia 4500
001 10.1016-j.ecolind.2021.108173
008 220427s2021 CNT 000 0 und d
020 |a 1470160X (ISSN) 
245 1 0 |a Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ecolind.2021.108173 
520 3 |a The accurate classification of marsh vegetation is an important prerequisite for wetland management and protection. In this study, the Honghe National Nature Reserve was used as the research area. The VV and VH polarized backscattering coefficients of Sentinel-1B, the polarimetric decomposition parameters of Sentinel-1B, and Sentinel-2A multi-spectral images from June and September were selected to construct 18 multi-dimensional data sets. A highly correlated variable elimination algorithm, a recursive feature elimination variable selection algorithm (RFE-RF), and an optimized random forest algorithm (RF) were used to construct a marsh vegetation identification model. In this study, we searched for an RF model to achieve the accurate classification of marsh vegetation and find the best feature for identifying various types of vegetation. Additionally, the applicability of different optimized RF models to the task of the identification of wetland vegetation and the stability of the identification of marsh vegetation using different classification models were quantitatively analyzed. The results show the following: (1) RFE-RF variable selection and RF parameter optimization can reduce the data dimensionality, improve the accuracy and stability of the wetland vegetation classification model, and achieve a training accuracy of up to 85.39%. (2) The RF model integrating multi-spectral data, backscattering coefficients, and polarimetric decomposition parameters for June and September can obtain the highest overall accuracy (91.16%), and the model has the strongest applicability. (3) The importance of multi-spectral variables in wetland vegetation classification is higher than that of backscattering coefficients and polarimetric decomposition parameters. The visible bands and vegetation index are the most important variables, while the cross-polarized backscattering coefficient (Mean_VH), polarimetric decomposition eigenvalue (Mean_l1, Mean_l2), and calculated eigenvalues of the matrix (Mean_lambda) are the backscattering coefficient features and polarimetric decomposition parameters with the highest contributions. (4) The modified normalized difference water index in June (MNDWI_ Jun), blue band in September (Mean_B_Sep), location feature pixel coordinates (Y_Max_Pxl), and ratio vegetation index in September (RVI_Sep) have the highest contribution to the identification and classification of deep-water marsh vegetation, shallow-water marsh vegetation, forest, and shrubs, respectively. (5) The identification of forest is the strongest, and the classification accuracy for shrubs and deep-water marsh vegetation is greatly affected by the combination of time phase and data sources. © 2021 
650 0 4 |a algorithm 
650 0 4 |a Algorithm model 
650 0 4 |a Backscattering 
650 0 4 |a Backscattering coefficient 
650 0 4 |a Backscattering coefficients 
650 0 4 |a China 
650 0 4 |a Decision trees 
650 0 4 |a eigenvalue 
650 0 4 |a Eigenvalues and eigenfunctions 
650 0 4 |a forest 
650 0 4 |a Geometrical optics 
650 0 4 |a Heilongjiang 
650 0 4 |a Honghe Nature Reserve 
650 0 4 |a image classification 
650 0 4 |a Image segmentation 
650 0 4 |a Mapping 
650 0 4 |a mapping method 
650 0 4 |a marsh 
650 0 4 |a Marsh vegetation 
650 0 4 |a Marsh vegetation classification 
650 0 4 |a Marsh vegetation classification 
650 0 4 |a Multi-scale inheritance segmentation 
650 0 4 |a Multi-scale inheritance segmentation 
650 0 4 |a Parameter estimation 
650 0 4 |a Polarimetric decomposition 
650 0 4 |a Polarimetric decomposition parameter 
650 0 4 |a Polarimetric decomposition parameters 
650 0 4 |a Random forest algorithm 
650 0 4 |a Random forest algorithm 
650 0 4 |a Remote sensing 
650 0 4 |a Sentinel 
650 0 4 |a Spectroscopy 
650 0 4 |a synthetic aperture radar 
650 0 4 |a Synthetic aperture radar 
650 0 4 |a Variable selection 
650 0 4 |a Variables selections 
650 0 4 |a vegetation classification 
650 0 4 |a vegetation index 
650 0 4 |a vegetation mapping 
650 0 4 |a wetland management 
650 0 4 |a Wetland vegetation 
650 0 4 |a Wetlands 
700 1 |a Fan, D.  |e author 
700 1 |a Fu, B.  |e author 
700 1 |a Gao, E.  |e author 
700 1 |a He, H.  |e author 
700 1 |a Huang, L.  |e author 
700 1 |a Liu, L.  |e author 
700 1 |a Sun, J.  |e author 
700 1 |a Xie, S.  |e author 
700 1 |a Zuo, P.  |e author 
773 |t Ecological Indicators