Phase objectives analysis for PM2.5 reduction using dynamics forecasting approach under different scenarios of PGDP decline

PM2.5 concentration prediction is one of the atmospheric environmental issues of great concern to the public, and specifically the long-term PM2.5 change prediction can provide scientific basis for the government's energy conservation and emission reduction and industrial structure adjustment p...

Full description

Bibliographic Details
Main Authors: Bi, X. (Author), Feng, H. (Author), Fu, Y. (Author), He, X. (Author), Niu, J. (Author), Wang, P. (Author), Zhang, G. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
PM > 2.5
Online Access:View Fulltext in Publisher
LEADER 04053nam a2200649Ia 4500
001 10.1016-j.ecolind.2021.108003
008 220427s2021 CNT 000 0 und d
020 |a 1470160X (ISSN) 
245 1 0 |a Phase objectives analysis for PM2.5 reduction using dynamics forecasting approach under different scenarios of PGDP decline 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ecolind.2021.108003 
520 3 |a PM2.5 concentration prediction is one of the atmospheric environmental issues of great concern to the public, and specifically the long-term PM2.5 change prediction can provide scientific basis for the government's energy conservation and emission reduction and industrial structure adjustment policies in advance. This paper proposes a new dynamics forecasting approach suitable for small samples and the approach transforms the time series prediction into a dynamics system through the ordinary differential equation theory, which overcomes the limitation of traditional statistical methods on sample size. What is more important is that it not only includes the time series itself, but also uses prior information in the modeling process. Based on the dynamics forecasting approach, the phase objectives analysis model for PM2.5 reduction is constructed. The simulation experiment takes 11 prefecture level cities in Shanxi Province as research sites, and uses the annual PM2.5 concentration from 2014 to 2018 to verify whether the proposed model can significantly improve the fitting accuracy compared with the single SVM. The experimental results show that the MAE (mean absolute error) of Taiyuan site is reduced by 73.24% from 1.6030 of SVM model to 0.4290 of our proposed method. Similar conclusions can be obtained from other data sets, which considerably demonstrates the better generalization ability of the proposed model. In addition, this paper presents the forecast results of annual PM2.5 concentration in different PGDP (energy consumption per unit of GDP) scenarios from 2019 to 2023, and analyzes the impact of PGDP reduction on PM2.5 concentration. Among the three scenarios, the PM2.5 reduction is the most significant in the scenario of PGDP with 10% decrease. We would argue that a larger PGDP reduction might lead to a greater PM2.5 reduction. Therefore, PGDP can be used as the basis for the Chinese authorities to tailor strategies to reduce PM2.5 concentration. © 2021 The Author(s) 
650 0 4 |a % reductions 
650 0 4 |a accuracy assessment 
650 0 4 |a China 
650 0 4 |a concentration (composition) 
650 0 4 |a Dynamic forecasting 
650 0 4 |a Dynamic forecasting approach 
650 0 4 |a Dynamics 
650 0 4 |a Dynamics forecasting approach 
650 0 4 |a emission control 
650 0 4 |a Emission control 
650 0 4 |a energy conservation 
650 0 4 |a Energy consumption per unit of GDP 
650 0 4 |a Energy consumption per unit of GDP (PGDP) 
650 0 4 |a Energy utilization 
650 0 4 |a Environmental protection 
650 0 4 |a Forecasting 
650 0 4 |a forecasting method 
650 0 4 |a government 
650 0 4 |a industrial structure 
650 0 4 |a long-term change 
650 0 4 |a Objective analysis 
650 0 4 |a Ordinary differential equations 
650 0 4 |a particulate matter 
650 0 4 |a Per unit 
650 0 4 |a Phase objective analyse model 
650 0 4 |a Phase objectives analysis model 
650 0 4 |a PM  |- 2.5 
650 0 4 |a PM2.5 concentration prediction 
650 0 4 |a PM2.5 concentration prediction 
650 0 4 |a pollution policy 
650 0 4 |a scenario analysis 
650 0 4 |a Shanxi 
650 0 4 |a Taiyuan 
650 0 4 |a Time series 
650 0 4 |a Time series analysis 
650 0 4 |a Time series forecasting 
650 0 4 |a Time series forecasting 
700 1 |a Bi, X.  |e author 
700 1 |a Feng, H.  |e author 
700 1 |a Fu, Y.  |e author 
700 1 |a He, X.  |e author 
700 1 |a Niu, J.  |e author 
700 1 |a Wang, P.  |e author 
700 1 |a Zhang, G.  |e author 
773 |t Ecological Indicators