Variations in soil microbial communities in the sedge-dominated peatlands along an altitude gradient on the northern slope of Changbai Mountain, China

The mechanisms that shape soil microbes in peatlands along the altitude gradient remain unresolved due to limited data and inconsistent findings along different vertical vegetation belts from investigations. In this study, we present results of soil phospholipid fatty acids (PLFAs) profiles from an...

Full description

Bibliographic Details
Main Authors: Jiang, M. (Author), Wang, G. (Author), Wang, M. (Author), Xue, Z. (Author), Zhao, M. (Author), Zhao, Y. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03559nam a2200661Ia 4500
001 10.1016-j.ecolind.2021.107964
008 220427s2021 CNT 000 0 und d
020 |a 1470160X (ISSN) 
245 1 0 |a Variations in soil microbial communities in the sedge-dominated peatlands along an altitude gradient on the northern slope of Changbai Mountain, China 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ecolind.2021.107964 
520 3 |a The mechanisms that shape soil microbes in peatlands along the altitude gradient remain unresolved due to limited data and inconsistent findings along different vertical vegetation belts from investigations. In this study, we present results of soil phospholipid fatty acids (PLFAs) profiles from an altitude gradient survey (300–1500 m) in Changbai Mountain aimed at determining the elevational patterns of soil microbial communities and their driving forces in the sedge-dominated peatlands. The results showed that the total microbial lipid biomass in the sedge-dominated peatlands increased with altitude. However, there were no obvious trends with altitude in ratios of the fungi to bacteria (F/B), the Gram positive bacteria to Gram negative bacteria (G+/G-), and the bacteria to actinomycetes (B/ACT). Redundancy analysis indicated that the dissolved organic carbon (DOC) explained most variation in soil microbial groups, while mean annual temperature (MAT) explained most variation in microbial community structure. Variation partitioning analysis revealed that climatic factors had greater influences on soil microbial community structure than soil physical and chemical properties, and 53% of the total variance was explained by MAT, mean annual precipitation (MAP) and their combined effects. This finding challenges the prevailing view that local soil properties, but not climate, control soil microbial community structure along the altitude gradient, and enhances our understanding of the role of soil microbes as carbon pumps in sedge-dominated peatlands in the process of global warming. © 2021 The Author(s) 
650 0 4 |a Actinobacteria (class) 
650 0 4 |a altimetry 
650 0 4 |a altitude 
650 0 4 |a Altitude gradient 
650 0 4 |a Altitude gradients 
650 0 4 |a Bacteria 
650 0 4 |a Baekdu Mountain 
650 0 4 |a Carbon pump 
650 0 4 |a Carbon pump 
650 0 4 |a Changbai Mountains 
650 0 4 |a Chemical analysis 
650 0 4 |a Climate change 
650 0 4 |a community structure 
650 0 4 |a dissolved organic carbon 
650 0 4 |a Fatty acids 
650 0 4 |a global warming 
650 0 4 |a Global warming 
650 0 4 |a Limited data 
650 0 4 |a Mean annual temperatures 
650 0 4 |a microbial activity 
650 0 4 |a microbial community 
650 0 4 |a Negibacteria 
650 0 4 |a Organic carbon 
650 0 4 |a peatland 
650 0 4 |a Peatland 
650 0 4 |a phospholipid 
650 0 4 |a Phospholipid fatty acids 
650 0 4 |a Phospholipid fatty acids 
650 0 4 |a Phospholipids 
650 0 4 |a physicochemical property 
650 0 4 |a Posibacteria 
650 0 4 |a sedge 
650 0 4 |a slope 
650 0 4 |a Soil microbes 
650 0 4 |a Soil microbial community 
650 0 4 |a Soil microbial community structure 
650 0 4 |a soil microorganism 
650 0 4 |a Soils 
650 0 4 |a Wetlands 
700 1 |a Jiang, M.  |e author 
700 1 |a Wang, G.  |e author 
700 1 |a Wang, M.  |e author 
700 1 |a Xue, Z.  |e author 
700 1 |a Zhao, M.  |e author 
700 1 |a Zhao, Y.  |e author 
773 |t 999;