Membrane inlet mass spectrometry method (REOX/MIMS) to measure 15N-nitrate in isotope-enrichment experiments

Using 15N stable isotope as a tracer to quantify N transformation rates in isotope-enrichment experiments improves understanding of the N cycle in various ecosystems. However, measuring 15N-nitrate (15NO3−) in small volumes of water for these experiments is a major challenge due to the inconvenience...

Full description

Bibliographic Details
Main Authors: Gao, D. (Author), Gardner, W.S (Author), Gong, J. (Author), Hardison, A.K (Author), Lin, X. (Author), Liu, Z. (Author), Lu, K. (Author), Xu, X. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
15 > N
Online Access:View Fulltext in Publisher
LEADER 03398nam a2200601Ia 4500
001 10.1016-j.ecolind.2021.107639
008 220427s2021 CNT 000 0 und d
020 |a 1470160X (ISSN) 
245 1 0 |a Membrane inlet mass spectrometry method (REOX/MIMS) to measure 15N-nitrate in isotope-enrichment experiments 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ecolind.2021.107639 
520 3 |a Using 15N stable isotope as a tracer to quantify N transformation rates in isotope-enrichment experiments improves understanding of the N cycle in various ecosystems. However, measuring 15N-nitrate (15NO3−) in small volumes of water for these experiments is a major challenge due to the inconvenience of preparing samples by traditional techniques. We developed a “REOX/MIMS” method by applying membrane inlet mass spectrometry (MIMS) to determining 15NO3− concentrations in a small volumes of water from isotope-enrichment experiments after converting the dissolved inorganic N to N2. The nitrates (NO3− + NO2−) were reduced to NH4+ with zinc powder, and the ammonium (NH4+) was then oxidized to N2 by hypobromite iodine solution. The resulting 29N2 and 30N2 were measured via MIMS. This optimized protocol provides a sensitive (~0.1 μM) and precise (relative standard deviation = 0.1–4.37%) approach to quantify 15NO3− concentrations (0.1–500 µM) in water samples over a wide range of salinities (0–35‰) and in 2 M KCl solution with excellent calibration curves (R2 ≥ 0.9996, p < 0.0001). The method was combined with 15NO3− isotope-enrichment incubation experiments to measure gross nitrification and gross NO3− immobilization rates in various ecosystems. It was rapid, accurate, and cost-effective. Future applications of this efficient approach will inform scientists, modelers and decision makers about mechanisms, sources, fates, and effects of NO3− delivered to or produced in numerous aquatic and terrestrial ecosystems. © 2021 The Author(s) 
650 0 4 |+ 15  |/ N 
650 0 4 |a 15NO3− 
650 0 4 |a 15NO3− 
650 0 4 |a ammonium 
650 0 4 |a Aquatic ecosystems 
650 0 4 |a Chlorine compounds 
650 0 4 |a concentration (composition) 
650 0 4 |a Cost effectiveness 
650 0 4 |a decision making 
650 0 4 |a Decision making 
650 0 4 |a Enrichment experiments 
650 0 4 |a Gross nitrification 
650 0 4 |a Gross nitrification 
650 0 4 |a Gross NO3− immobilization 
650 0 4 |a Gross NO3− immobilization 
650 0 4 |a immobilization 
650 0 4 |a Isotope dilution method 
650 0 4 |a Isotope dilution methods 
650 0 4 |a Isotope enrichments 
650 0 4 |a Isotopes 
650 0 4 |a mass spectrometry 
650 0 4 |a Mass spectrometry 
650 0 4 |a Membrane inlet mass spectrometry 
650 0 4 |a nitrate 
650 0 4 |a Nitrates 
650 0 4 |a Nitrification 
650 0 4 |a nitrogen cycle 
650 0 4 |a Potassium compounds 
650 0 4 |a REOX/membrane inlet mass spectrometry 
650 0 4 |a REOX/MIMS 
650 0 4 |a stable isotope 
650 0 4 |a Stable isotopes 
700 1 |a Gao, D.  |e author 
700 1 |a Gardner, W.S.  |e author 
700 1 |a Gong, J.  |e author 
700 1 |a Hardison, A.K.  |e author 
700 1 |a Lin, X.  |e author 
700 1 |a Liu, Z.  |e author 
700 1 |a Lu, K.  |e author 
700 1 |a Xu, X.  |e author 
773 |t Ecological Indicators