A novel CNN-LSTM-based approach to predict urban expansion

Time-series remote sensing data offer a rich source of information that can be used in a wide range of applications, from monitoring changes in land cover to surveillance of crops, coastal changes, flood risk assessment, and urban sprawl. In this paper, time-series satellite images are used to predi...

Full description

Bibliographic Details
Main Authors: Ahmad, J. (Author), Ahmed, F. (Author), Boulila, W. (Author), Ghandorh, H. (Author), Khan, M.A (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02827nam a2200409Ia 4500
001 10.1016-j.ecoinf.2021.101325
008 220427s2021 CNT 000 0 und d
020 |a 15749541 (ISSN) 
245 1 0 |a A novel CNN-LSTM-based approach to predict urban expansion 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ecoinf.2021.101325 
520 3 |a Time-series remote sensing data offer a rich source of information that can be used in a wide range of applications, from monitoring changes in land cover to surveillance of crops, coastal changes, flood risk assessment, and urban sprawl. In this paper, time-series satellite images are used to predict urban expansion. As the ground truth is not available in time-series satellite images, an unsupervised image segmentation method based on deep learning is used to generate the ground truth for training and validation. The automated annotated images are then manually validated using Google Maps to generate the ground truth. The remaining data were then manually annotated. Prediction of urban expansion is achieved by using a ConvLSTM network, which can learn the global spatio-temporal information without shrinking the size of spatial feature maps. The ConvLSTM based model is applied on the time-series satellite images and the results of prediction are compared with Pix2pix and Dual GAN networks. In this paper, experimental results are conducted using several multi-date satellite images representing the three largest cities in Saudi Arabia, namely: Riyadh, Jeddah, and Dammam. The evaluation results show that the proposed ConvLSTM based model produced better prediction results in terms of Mean Square Error, Root Mean Square Error, Peak Signal to Noise Ratio, Structural Similarity Index, and overall classification accuracy as compared to Pix2pix and Dual GAN. Moreover, the training time of the proposed architecture is less than the Dual GAN architecture. © 2021 Elsevier B.V. 
650 0 4 |a accuracy assessment 
650 0 4 |a Convolutional neural networks 
650 0 4 |a Dammam 
650 0 4 |a Deep learning 
650 0 4 |a detection method 
650 0 4 |a Eastern Province [Saudi Arabia] 
650 0 4 |a Jeddah 
650 0 4 |a Long short term memory 
650 0 4 |a Makkah [Saudi Arabia] 
650 0 4 |a remote sensing 
650 0 4 |a Riyadh [Riyadh (PRV)] 
650 0 4 |a satellite data 
650 0 4 |a Satellite image 
650 0 4 |a satellite imagery 
650 0 4 |a Saudi Arabia 
650 0 4 |a segmentation 
650 0 4 |a spatiotemporal analysis 
650 0 4 |a Urban change prediction 
650 0 4 |a urbanization 
700 1 |a Ahmad, J.  |e author 
700 1 |a Ahmed, F.  |e author 
700 1 |a Boulila, W.  |e author 
700 1 |a Ghandorh, H.  |e author 
700 1 |a Khan, M.A.  |e author 
773 |t Ecological Informatics