A progressive framework for rotary motion deblurring

The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles. Traditional rotary motion deblurring methods suffer from ringing artifacts and noise, especially for large blur extents. To solve the above problems, we propose a progressive rotary m...

Full description

Bibliographic Details
Main Authors: Du, Y. (Author), Fan, F. (Author), Huang, J. (Author), Ma, Y. (Author), Qin, J. (Author)
Format: Article
Language:English
Published: KeAi Communications Co. 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02271nam a2200325Ia 4500
001 10.1016-j.dt.2023.04.007
008 230526s2023 CNT 000 0 und d
020 |a 20963459 (ISSN) 
245 1 0 |a A progressive framework for rotary motion deblurring 
260 0 |b KeAi Communications Co.  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.dt.2023.04.007 
520 3 |a The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles. Traditional rotary motion deblurring methods suffer from ringing artifacts and noise, especially for large blur extents. To solve the above problems, we propose a progressive rotary motion deblurring framework consisting of a coarse deblurring stage and a refinement stage. In the first stage, we design an adaptive blur extents factor (BE factor) to balance noise suppression and details reconstruction. And a novel deconvolution model is proposed based on BE factor. In the second stage, a triple-scale deformable module CNN(TDM-CNN) is designed to reduce the ringing artifacts, which can exploit the 2D information of an image and adaptively adjust spatial sampling locations. To establish a standard evaluation benchmark, a real-world rotary motion blur dataset is proposed and released, which includes rotary blurred images and corresponding ground truth images with different blur angles. Experimental results demonstrate that the proposed method outperforms the state-of-the-art models on synthetic and real-world rotary motion blur datasets. The code and dataset are available at https://github.com/Jinhui-Qin/RotaryDeblurring. © 2023 China Ordnance Society 
650 0 4 |a Blur extent factor 
650 0 4 |a Blur extents factor 
650 0 4 |a Imaging seekers 
650 0 4 |a Motion blur 
650 0 4 |a Motion deblurring 
650 0 4 |a Progressive framework 
650 0 4 |a Real-world 
650 0 4 |a Ringing artifacts 
650 0 4 |a Rotary motion deblurring 
650 0 4 |a Rotary motions 
650 0 4 |a TDM-CNN 
650 0 4 |a Triple-scale deformable module CNN 
700 1 0 |a Du, Y.  |e author 
700 1 0 |a Fan, F.  |e author 
700 1 0 |a Huang, J.  |e author 
700 1 0 |a Ma, Y.  |e author 
700 1 0 |a Qin, J.  |e author 
773 |t Defence Technology  |x 20963459 (ISSN)