Numerical study of heat and mass transfer enhancement in Prandtl fluid MHD flow using Cattaneo-Christov heat flux theory

Heat and mass transfer have numerous industrial applications. The classical heat and mass transfer laws (Fourier and Fick laws) do not predict thermal and solute relaxation time phenomena. However, in this article, generalized modeling related to simultaneous heat and mass transfer in non-Newtonian...

Full description

Bibliographic Details
Main Authors: Alharbi, S.O (Author), Ali, B. (Author), Alqahtani, A.S (Author), Madkhali, H.A (Author), Nawaz, M. (Author), Salmi, A. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02962nam a2200469Ia 4500
001 10.1016-j.csite.2022.101949
008 220510s2022 CNT 000 0 und d
020 |a 2214157X (ISSN) 
245 1 0 |a Numerical study of heat and mass transfer enhancement in Prandtl fluid MHD flow using Cattaneo-Christov heat flux theory 
260 0 |b Elsevier Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.csite.2022.101949 
520 3 |a Heat and mass transfer have numerous industrial applications. The classical heat and mass transfer laws (Fourier and Fick laws) do not predict thermal and solute relaxation time phenomena. However, in this article, generalized modeling related to simultaneous heat and mass transfer in non-Newtonian fluid in the presence of chemical reaction and heat generation is presented and models are numerically solved by the finite element method (FEM). Hybrid nanoparticles Ag andFe3O4 are considered and novel correlations are inserted during numerical simulations. The present results have a good agreement with already published benchmark. Thermal relaxation time is the characteristics of the fluid due to which it avoids or tries to avoid the thermal changes. The fluid with thermal relaxation characteristic tries to restore the thermal equilibrium and hence the temperature of the fluid is decreased. The solute relation is incorporated in the concentration equation from generalized Fick's law and solute relaxation time has shown a decreasing tendency in the concentration field. The solute boundary layer region can be controlled via an increase in the solute relaxation parameter. Ohmic dissipation in hybrid nanofluid Ag-Fe3O4- Prandtl fluid) is stronger than that in mono nanofluid (Ag- Prandtl fluid). Hybrid nanofluid (Ag-Fe3O4- Prandtl fluid) produces more heat due to Joule heating than that produced by mono nanofluid (Ag- Prandtl fluid). © 2022 The Authors. 
650 0 4 |a Boundary layer flow 
650 0 4 |a Boundary layers 
650 0 4 |a Cattaneo-christov heat flux model 
650 0 4 |a Cattaneo-Christov heat flux model 
650 0 4 |a Chemical reaction 
650 0 4 |a Chemical reactions 
650 0 4 |a Fick's Law 
650 0 4 |a Fick's laws 
650 0 4 |a Fluid modeling 
650 0 4 |a Heat and mass transfer 
650 0 4 |a Heat flux 
650 0 4 |a Heat flux models 
650 0 4 |a Heat generation 
650 0 4 |a Heat Transfer enhancement 
650 0 4 |a Hybrid nanofluid 
650 0 4 |a Magnetite 
650 0 4 |a Magnetohydrodynamics 
650 0 4 |a Mathematical solutions 
650 0 4 |a Nanofluidics 
650 0 4 |a Nanofluids 
650 0 4 |a Non Newtonian flow 
650 0 4 |a Non Newtonian liquids 
650 0 4 |a Prandtl fluid model 
700 1 |a Alharbi, S.O.  |e author 
700 1 |a Ali, B.  |e author 
700 1 |a Alqahtani, A.S.  |e author 
700 1 |a Madkhali, H.A.  |e author 
700 1 |a Nawaz, M.  |e author 
700 1 |a Salmi, A.  |e author 
773 |t Case Studies in Thermal Engineering