A conceptual framework for establishing trust in real world intelligent systems

Intelligent information systems that contain emergent elements often encounter trust problems because results do not get sufficiently explained and the procedure itself can not be fully retraced. This is caused by a control flow depending either on stochastic elements or on the structure and relevan...

Full description

Bibliographic Details
Main Authors: Guckert, M. (Author), Gumpfer, N. (Author), Hannig, J. (Author), Keller, T. (Author), Urquhart, N. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
AI
Online Access:View Fulltext in Publisher
LEADER 02746nam a2200505Ia 4500
001 10.1016-j.cogsys.2021.04.001
008 220427s2021 CNT 000 0 und d
020 |a 13890417 (ISSN) 
245 1 0 |a A conceptual framework for establishing trust in real world intelligent systems 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.cogsys.2021.04.001 
520 3 |a Intelligent information systems that contain emergent elements often encounter trust problems because results do not get sufficiently explained and the procedure itself can not be fully retraced. This is caused by a control flow depending either on stochastic elements or on the structure and relevance of the input data. Trust in such algorithms can be established by letting users interact with the system so that they can explore results and find patterns that can be compared with their expected solution. Reflecting features and patterns of human understanding of a domain against algorithmic results can create awareness of such patterns and may increase the trust that a user has in the solution. If expectations are not met, close inspection can be used to decide whether a solution conforms to the expectations or whether it goes beyond the expected. By either accepting or rejecting a solution, the user's set of expectations evolves and a learning process for the users is established. In this paper we present a conceptual framework that reflects and supports this process. The framework is the result of an analysis of two exemplary case studies from two different disciplines with information systems that assist experts in their complex tasks. © 2021 The Author(s) 
650 0 4 |a AI 
650 0 4 |a article 
650 0 4 |a awareness 
650 0 4 |a Case-studies 
650 0 4 |a Complex task 
650 0 4 |a conceptual framework 
650 0 4 |a Conceptual frameworks 
650 0 4 |a Control flows 
650 0 4 |a expectation 
650 0 4 |a Explainable AI 
650 0 4 |a human 
650 0 4 |a Human understanding 
650 0 4 |a information system 
650 0 4 |a Information systems 
650 0 4 |a Information use 
650 0 4 |a Intelligent information systems 
650 0 4 |a Intelligent systems 
650 0 4 |a Intelligent systems 
650 0 4 |a knowledge management 
650 0 4 |a Knowledge management 
650 0 4 |a Knowledge patterns 
650 0 4 |a learning 
650 0 4 |a Learning process 
650 0 4 |a Stochastic elements 
650 0 4 |a Stochastic systems 
650 0 4 |a trust 
650 0 4 |a Trust 
700 1 |a Guckert, M.  |e author 
700 1 |a Gumpfer, N.  |e author 
700 1 |a Hannig, J.  |e author 
700 1 |a Keller, T.  |e author 
700 1 |a Urquhart, N.  |e author 
773 |t Cognitive Systems Research