Robust Bayesian target value optimization

We consider the problem of finding an input to a stochastic black box function such that the scalar output of the black box function is as close as possible to a target value in the sense of the expected squared error. While the optimization of stochastic black boxes is classic in (robust) Bayesian...

Full description

Bibliographic Details
Main Authors: Geiger, B.C (Author), Hoffer, J.G (Author), Ranftl, S. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02414nam a2200349Ia 4500
001 10.1016-j.cie.2023.109279
008 230529s2023 CNT 000 0 und d
020 |a 03608352 (ISSN) 
245 1 0 |a Robust Bayesian target value optimization 
260 0 |b Elsevier Ltd  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.cie.2023.109279 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158900520&doi=10.1016%2fj.cie.2023.109279&partnerID=40&md5=2e655366cca5c3644cff0b445f751afa 
520 3 |a We consider the problem of finding an input to a stochastic black box function such that the scalar output of the black box function is as close as possible to a target value in the sense of the expected squared error. While the optimization of stochastic black boxes is classic in (robust) Bayesian optimization, the current approaches based on Gaussian processes predominantly focus either on (i) maximization/minimization rather than target value optimization or (ii) on the expectation, but not the variance of the output, ignoring output variations due to stochasticity in uncontrollable environmental variables. In this work, we fill this gap and derive acquisition functions for common criteria such as the expected improvement, the probability of improvement, and the lower confidence bound, assuming that aleatoric effects are Gaussian with known variance. Our experiments illustrate that this setting is compatible with certain extensions of Gaussian processes, and show that the thus derived acquisition functions can outperform classical Bayesian optimization even if the latter assumptions are violated. An industrial use case in billet forging is presented. © 2023 Elsevier Ltd 
650 0 4 |a Aleatoric uncertainty 
650 0 4 |a Bayesian optimization 
650 0 4 |a Gaussian distribution 
650 0 4 |a Gaussian noise (electronic) 
650 0 4 |a Gaussian process 
650 0 4 |a Gaussian Processes 
650 0 4 |a Multiobjective optimization 
650 0 4 |a Stochastic systems 
650 0 4 |a Stochastics 
650 0 4 |a Target values 
650 0 4 |a Target vector optimization 
650 0 4 |a Target vectors 
650 0 4 |a Uncertainty 
650 0 4 |a Value optimization 
650 0 4 |a Vector optimizations 
700 1 0 |a Geiger, B.C.  |e author 
700 1 0 |a Hoffer, J.G.  |e author 
700 1 0 |a Ranftl, S.  |e author 
773 |t Computers and Industrial Engineering