Pattern analysis of the combustions of various copper concentrate tablets using high-speed microscopy and video-based deep learning

The combustion behavior of the complex, ever-changing Cu concentrate with SiO2 flux in a flash smelting shaft should be comprehensively understood to improve the efficiency and energy consumption of smelting. To characterize the combustion behavior of each sample, combustion studies involving high-s...

Full description

Bibliographic Details
Main Authors: Goto, Y. (Author), Natsui, S. (Author), Nogami, H. (Author), Takahashi, J.-I (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02367nam a2200385Ia 4500
001 10.1016-j.ces.2023.118822
008 230526s2023 CNT 000 0 und d
020 |a 00092509 (ISSN) 
245 1 0 |a Pattern analysis of the combustions of various copper concentrate tablets using high-speed microscopy and video-based deep learning 
260 0 |b Elsevier Ltd  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ces.2023.118822 
520 3 |a The combustion behavior of the complex, ever-changing Cu concentrate with SiO2 flux in a flash smelting shaft should be comprehensively understood to improve the efficiency and energy consumption of smelting. To characterize the combustion behavior of each sample, combustion studies involving high-speed digital microscopy and thermal measurements were performed using numerous small Cu concentrate tablets. Generally, two temperature ranges of heating retardation were observed during combustion, at approximately 800–1000 and 1150–1200 °C. A novel video-based Cu concentrate classification system was used to successfully recognize the different combustion patterns of tablets with Cu concentrate-SiO2 mixtures under oxidation gas. This classification system also enabled the calculation of the chemical composition of the concentrate by transforming the network output into a probability distribution. The algorithm based on deep learning employed in this study could learn the combustion behaviors of SiO2-containing Cu concentrates using time-series images extracted from video data. © 2023 The Author(s) 
650 0 4 |a Classification system 
650 0 4 |a Combustion 
650 0 4 |a Combustion behaviours 
650 0 4 |a Combustion test 
650 0 4 |a Copper concentrates 
650 0 4 |a Copper smelting 
650 0 4 |a Deep learning 
650 0 4 |a Energy utilization 
650 0 4 |a Explainable deep learning 
650 0 4 |a Flash smelting 
650 0 4 |a High speed microscopy 
650 0 4 |a High-sped video 
650 0 4 |a Microscopic videography 
650 0 4 |a Pattern analysis 
650 0 4 |a Probability distributions 
650 0 4 |a Silica 
650 0 4 |a Silicon 
650 0 4 |a Video recording 
700 1 0 |a Goto, Y.  |e author 
700 1 0 |a Natsui, S.  |e author 
700 1 0 |a Nogami, H.  |e author 
700 1 0 |a Takahashi, J.-I.  |e author 
773 |t Chemical Engineering Science  |x 00092509 (ISSN)  |g 276