Inference on homeostatic belief precision

Interoception and homeostatic/allostatic control are intertwined branches of closed-loop brain-body interactions (BBI). Given their importance in mental and psychosomatic disorders, establishing computational assays of BBI represents a clinically important but methodologically challenging endeavor....

Full description

Bibliographic Details
Main Authors: Alkan, G. (Author), Eren, O.C (Author), Petzschner, F.H (Author), Stephan, K.E (Author), Unal, O. (Author), Yao, Y. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02691nam a2200541Ia 4500
001 10.1016-j.biopsycho.2021.108190
008 220427s2021 CNT 000 0 und d
020 |a 03010511 (ISSN) 
245 1 0 |a Inference on homeostatic belief precision 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.biopsycho.2021.108190 
520 3 |a Interoception and homeostatic/allostatic control are intertwined branches of closed-loop brain-body interactions (BBI). Given their importance in mental and psychosomatic disorders, establishing computational assays of BBI represents a clinically important but methodologically challenging endeavor. This technical note presents a novel approach, derived from a generic computational model of homeostatic/allostatic control that underpins (meta)cognitive theories of affective and psychosomatic disorders. This model views homeostatic setpoints as probability distributions (“homeostatic beliefs”) whose parameters determine regulatory efforts and change dynamically under allostatic predictions. In particular, changes in homeostatic belief precision, triggered by anticipated threats to homeostasis, are thought to alter cerebral regulation of bodily states. Here, we present statistical procedures for inferring homeostatic belief precision from measured bodily states and/or regulatory (action) signals. We analyze the inference problem, derive two alternative estimators of homeostatic belief precision, and apply our method to simulated data. Our proposed approach may prove useful for assessing BBI in individual subjects. © 2021 The Authors 
650 0 4 |a adult 
650 0 4 |a allostasis 
650 0 4 |a Allostasis 
650 0 4 |a Allostatic self-efficacy 
650 0 4 |a article 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a Computational psychosomatics 
650 0 4 |a female 
650 0 4 |a homeostasis 
650 0 4 |a homeostasis 
650 0 4 |a Homeostasis 
650 0 4 |a Homeostasis 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a interoception 
650 0 4 |a Interoception 
650 0 4 |a Interoception 
650 0 4 |a male 
650 0 4 |a metacognition 
650 0 4 |a Metacognition 
650 0 4 |a prediction 
650 0 4 |a probability 
650 0 4 |a Probability 
650 0 4 |a psychosomatics 
650 0 4 |a self concept 
650 0 4 |a simulation 
650 0 4 |a Translational neuro-modeling 
700 1 |a Alkan, G.  |e author 
700 1 |a Eren, O.C.  |e author 
700 1 |a Petzschner, F.H.  |e author 
700 1 |a Stephan, K.E.  |e author 
700 1 |a Unal, O.  |e author 
700 1 |a Yao, Y.  |e author 
773 |t Biological Psychology