Stochastic output feedback MPC with intermittent observations

This paper designs a model predictive control (MPC) law for constrained linear systems with stochastic additive disturbances and noisy measurements, minimising a discounted cost subject to a discounted expectation constraint. It is assumed that sensor data is lost with a known probability. Taking in...

Full description

Bibliographic Details
Main Authors: Cannon, M. (Author), Goulart, P.J (Author), Yan, S. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02446nam a2200445Ia 4500
001 10.1016-j.automatica.2022.110282
008 220510s2022 CNT 000 0 und d
020 |a 00051098 (ISSN) 
245 1 0 |a Stochastic output feedback MPC with intermittent observations 
260 0 |b Elsevier Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.automatica.2022.110282 
520 3 |a This paper designs a model predictive control (MPC) law for constrained linear systems with stochastic additive disturbances and noisy measurements, minimising a discounted cost subject to a discounted expectation constraint. It is assumed that sensor data is lost with a known probability. Taking into account the data losses modelled by a Bernoulli process, we parameterise the predicted control policy as an affine function of future observations and obtain a convex linear-quadratic optimal control problem. Constraint satisfaction and a discounted cost bound are ensured without imposing bounds on the distributions of the disturbance and noise inputs. In addition, the average long-run undiscounted closed loop cost is shown to be finite if the discount factor takes appropriate values. We analyse robustness of the proposed control law with respect to possible uncertainties in the arrival probability of sensor data and we bound the impact of these uncertainties on constraint satisfaction and the discounted cost. Numerical simulations are provided to illustrate these results. © 2022 Elsevier Ltd 
650 0 4 |a Chance constraint 
650 0 4 |a Chance constraints 
650 0 4 |a Constraint Satisfaction 
650 0 4 |a Convex optimisation 
650 0 4 |a Convex optimization 
650 0 4 |a Discounted costs 
650 0 4 |a Feedback 
650 0 4 |a Linear systems 
650 0 4 |a Model predictive control 
650 0 4 |a Model-predictive control 
650 0 4 |a Optimal control systems 
650 0 4 |a Output feedback 
650 0 4 |a Output-feedback 
650 0 4 |a Packet drops 
650 0 4 |a Packet loss 
650 0 4 |a Predictive control systems 
650 0 4 |a Quadratic programming 
650 0 4 |a Sensors data 
650 0 4 |a Stochastic control systems 
650 0 4 |a Stochastic models 
650 0 4 |a Stochastic systems 
650 0 4 |a Stochastics 
650 0 4 |a Uncertainty 
650 0 4 |a Uncertainty analysis 
700 1 |a Cannon, M.  |e author 
700 1 |a Goulart, P.J.  |e author 
700 1 |a Yan, S.  |e author 
773 |t Automatica